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Maarten Löffler3, Jun Luo4, Rodrigo I. Silveira3, and Bettina Speckmann2

1 Dep. Computer Science and Engineering, Polytechnic Institute of NYU, USA
aronov@poly.edu

2 Dep. of Mathematics and Computer Science, TU Eindhoven, The Netherlands
{kbuchin,speckman}@win.tue.nl

3 Dep. of Information and Computing Sciences, Utrecht University, The Netherlands
{maike,marc,loffler,rodrigo}@cs.uu.nl

4 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
jun.luo@sub.siat.ac.cn

Abstract. A feed-link is an artificial connection from a given location
p to a real-world network. It is most commonly added to an incomplete
network to improve the results of network analysis, by making p part
of the network. The feed-link has to be “reasonable”, hence we use the
concept of dilation to determine the quality of a connection.

We consider the following abstract problem: Given a simple polygon
P with n vertices and a point p inside, determine a point q on P such that
adding a feedlink pq minimizes the maximum dilation of any point on P .
Here the dilation of a point r on P is the ratio of the shortest route from
r over P and pq to p, to the Euclidean distance from r to p. We solve this
problem in O(λ7(n) log n) time, where λ7(n) is the slightly superlinear
maximum length of a Davenport-Schinzel sequence of order 7. We also
show that for convex polygons, two feed-links are always sufficient and
sometimes necessary to realize constant dilation, and that k feed-links
lead to a dilation of 1 + O(1/k). For (α, β)-covered polygons, a constant
number of feed-links suffices to realize constant dilation.

1 Introduction

Network analysis is a type of geographical analysis on real-world networks, such
as road, subway, or river networks. Many facility location problems involve net-
work analysis. For example, when a location for a new hospital needs to be
chosen, a feasibility study typically includes values that state how many people
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would have their travel time to the nearest hospital decreased to below 30 min-
utes due to the new hospital location. In a more global study of connectivity, one
may analyze how many households are reachable within 45 minutes from a fire
station. In this case, the households are typically aggregated by municipality or
postal-code region, and the centroid of this region is taken as the representative
point. This representative point might not lie on the road network. It might
even be far removed from it, since nation-wide connectivity studies seldomly use
detailed network data for their analysis. A similar situation occurs when the
quality of the network data is not very high. In developing countries, data sets
are often incomplete due to omissions in the digitization process, or due to lack
of regular updates. In both cases a network study must be executed that involves
a set of locations that are not connected to the network in the available data.

A workable solution in such cases is to connect the given locations to the
known road network by feed-links. A feed-link is an artificial connection between
a location and the known network that is “reasonable”, that is, it is conceivable
that such a connection exists in the real world [2,6]. A road network forms
an embedded, mostly planar graph. Hence a location that does not lie on the
network, lies inside some face of this graph. Such a face can be represented by a
simple polygon. A feed-link is then a connection from the given location to the
boundary of the simple polygon.

When computing feed-links we need to be able to judge their quality. That is,
we have to assess if a particular connection could possibly exist in reality. To do
this, we use the concept of dilation, also known as stretch factor or crow flight
conversion coefficient. People in general do not like detours, so a connection that
causes as little detour as possible, is more likely to be “real”. Given an embedded
plane graph, the dilation of two points p and q on the graph is the ratio of their
distance within the graph to their Euclidean distance. The concept of dilation
is commonly used in computational geometry for the construction of spanners :
a t-spanner is a graph defined on a set of points such that the dilation between
any two points is at most t, see [7,10,13,14,15].

In this paper we consider a single point p inside a simple polygon, whose
boundary we denote by P . We solve the problem of placing one feed-link between
p and P so that the maximum dilation over all points on P to p is minimized.
We assume that a feed-link is a straight-line connection between p and exactly
one point q on P . We allow the feed-link pq to intersect P in more points, see
Fig. 1 (left), but assume that it is not possible to “hop on” the feed-link at any
such point other than q (the white points in the figure provide no access to the
feed-link). Fig. 1 (middle) shows that the feed-link yielding minimum dilation
may intersect P in a point other than q. One could also choose to disallow feed-
links that intersect the outside of P , or to use geodesic shortest paths inside P
as feed-links, and measure the dilation of any point on P with respect to its
geodesic distance to p. We also study the problem of connecting several feed-
links to p to bound the dilation. Then any point on P uses exactly one of the
feed-links to reach p over the network. Fig. 1 (right) shows that n/2 feed-links
may be necessary to bound the dilation by a constant, if P has n vertices.
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Fig. 1. A feed-link that intersects P gives no access to the feed-link other than q (left).
A minimum dilation feed-link may intersect P in the interior of the feed-link (middle).
Simple polygons may require many feed-links to achieve constant dilation (right).

In a recent paper [2] we showed how to compute the dilation of a polygon
when a collection of feed-links to a point inside is given. We also gave heuristic
algorithms to place one or more feed-links and compared them experimentally
on generated polygons. The simple heuristic for one feed-link that connects p
to the closest point on P is a factor-2 approximation for the optimal feed-link
placement. We also studied the problem of placing as few feed-links as possible
to realize a specified dilation. A simple incremental algorithm exists that uses
at most one more feed-link than the minimum possible.

Results. In Section 2 we give an efficient algorithm to compute an optimal feed-
link. For a simple polygon with n vertices, our algorithm runs in O(λ7(n) log n)
time, where λ7(n) is the maximum length of a Davenport-Schinzel sequence
of order 7, which is only slightly superlinear [1,16]. If we are interested in the
dilation with respect to only m fixed points on P , the running time reduces to
O(n+m logm). Furthermore, we give a (1+ ε)-approximation algorithm for the
general problem that runs in O(n + (1/ε) log(1/ε)) time, for any ε > 0. The
results in this section also hold with geodesic dilation and feed-links, or with
feed-links that are not allowed to intersect the outside of P .

In Section 3.1 we show that for any convex polygon and any point inside, two
feed-links are sufficient and sometimes necessary to achieve constant dilation. In
this case the dilation is at most 3+

√
3. There are convex polygons where no two

feed-links can realize a dilation better than 2 +
√

3. We also show that we can
realize a dilation of 1+O(1/k) with k feed-links. Finally, in Section 3.2 we show
that for (α, β)-covered polygons [8] (a class of realistic polygons), a constant
number of feed-links suffices to obtain constant dilation. This result does not
hold for most other classes of realistic polygons.

Notation. P denotes the boundary of a convex or simple polygon, and p is a
point inside it. For two points a and b on P , P [a, b] denotes the portion of P from
a clockwise to b, its length is denoted by μ(a, b). Furthermore, μ(P ) denotes the
length (perimeter) of P . The Euclidean distance between two points p and q is
denoted by |pq|. For two points q and r on P , the dilation of point r when the
feed-link is pq is denoted by δq(r). For an edge e, δq(e) denotes the maximum
dilation of any point on e when the feed-link is pq.
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2 Computing One Feed-Link with Minimum Dilation

Let v0, . . . , vn−1 be the vertices of P and let p be a point inside P . We seek
a point q on P such that the feed-link pq minimizes the maximum dilation to
any point on P . We first consider the restricted case of minimizing the dilation
only for m given points on P . Then we solve the general case. In both cases, the
feed-link may connect to any point on P .

Let r be a point on P and let r′ be the point opposite r, that is, the distance
along P between r and r′ is exactly μ(r, r′) = μ(r′, r) = μ(P )/2. For any given
location of q, r has a specific dilation. We study the change in dilation of r as
q moves along P . If q ∈ P [r′, r], then the graph distance between p and r is
|pq| + μ(q, r), otherwise it is |pq| + μ(r, q).

v0

p
q

r

r′
ccw-dist(q)

cw-dist(q)

Fig. 2. cw-dist(q) and ccw-dist(q);
shown is case 1 with order v0qrr

′

We choose a fixed point v0 on P and
define two functions cw-dist(q) and ccw-
dist(q) that measure the distance from p
to v0 via the feed-link pq and then from q
either clockwise or counterclockwise along
P , see Fig. 2. The dilation δq(r) of r can be
expressed using either cw-dist(q) or ccw-
dist(q), depending on the order in which
v0, q, r, and r′ appear along P . In partic-
ular, we distinguish four cases that follow
from the six possible clockwise orders of
v0, q, r, and r′:

1. If the clockwise boundary order is v0qrr
′ or v0r

′qr, then the dilation is
δq(r) = (cw-dist(q) − μ(r, v0)) / |rp|.

2. If the clockwise boundary order is v0rr
′q, then the dilation is

δq(r) = (cw-dist(q) + μ(v0, r)) / |rp|.
3. If the clockwise boundary order is v0qr

′r, then the dilation is
δq(r) = (ccw-dist(q) + μ(r, v0)) / |rp|.

4. If the clockwise boundary order is v0rqr
′ or v0r

′rq, then the dilation is
δq(r) = (ccw-dist(q) − μ(v0, r)) / |rp|.

As q moves along P in clockwise direction, starting from v0, three of the cases
above apply consecutively. Either we have v0qrr

′ → v0rqr
′ → v0rr

′q, or v0qr
′r →

v0r
′qr → v0r

′rq. We parameterize the location of q both by cw-dist(q) and
ccw-dist(q). This has the useful effect that the dilation δq(r) of r is a linear
function on the intervals where it is defined (see Fig. 3). In particular, for a
fixed point r, δq(r) consists of three linear pieces. Note that we cannot combine
the two graphs into one, because the parameterizations of the location of q by
cw-dist(q) and ccw-dist(q) are not linearly related. This follows from the fact
that cw-dist(q)+ ccw-dist(q) = μ(P ) + 2 · |pq|.

We now solve the restricted case of minimizing the dilation only for m given
points on P . For each point r we determine the line segments in the two graphs
that give the dilation of r as a function of cw-dist(q) and ccw-dist(q). These line
segments can be found in O(n + m) time in total. Next, we compute the upper
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Fig. 3. Two graphs showing the dilation of a point r as a function of cw-dist(q) (left)
and ccw-dist(q) (right); q@r indicates “q is at position r”

envelope of the line segments in each of the two graphs. This takes O(m log m)
time using the algorithm of Hershberger [12], and results in two upper envelopes
with complexity O(m ·α(m)). Finally, we scan the two envelopes simultaneously,
one from left to right and the other from right to left, taking the maximum of the
corresponding positions on the two upper envelopes, and recording the lowest
value encountered. This is the optimal position of q.

To implement the scan, we first add the vertices of P to the two envelopes.
Since we need to compute the intersection points of the two envelopes we must
unify their parameterizations. Consider the locations of q that fall within an
interval I which is determined by two envelope edges e1 and e2. Since cw-
dist(q) = −ccw-dist(q)+2·|pq|+μ(P ), the line segment of one envelope restricted
to I becomes a hyperbolic arc in the parametrization of the other envelope. Hence
e1 and e2 can intersect at most twice in a unified parametrization, and the scan
takes time linear in the sum of the complexities of the two envelopes.

Theorem 1. Given the boundary P of a simple polygon with n vertices, a point
p inside P , and a set S of m points on P , we can compute the feed-link (which
might connect to any point on P ) that minimizes the maximum dilation from p
to any point in S in O(n + m log m) time.

Next we extend our algorithm to minimize the dilation over all points on P . Let
re(q) denote the point with the maximum dilation on a given edge e of P . Instead
of considering the graphs of the dilation for a set of fixed points, we consider
the graphs for the points re(q) for all edges of P . The positions of re(q) change
with q. The graphs of the dilation do not consist of line segments anymore, but
of more complex functions, which, however, intersect at most six times per pair,
as we prove in the full paper. As a consequence, we can compute their upper
envelope in O(λ7(n) log n) time [12], where λ7(n) is the maximum length of a
Davenport-Schinzel sequence of order 7, which is slightly superlinear [1,16].

Theorem 2. Given the boundary P of a simple polygon with n vertices and a
point p inside P , we can compute the feed-link that minimizes the maximum
dilation from p to any point on P in O(λ7(n) log n) time.
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Note that our algorithms ignore the degenerate case where p lies on a line sup-
porting an edge e of P . In this case cw-dist(q) and ccw-dist(q) are both constant
on e. This is in fact easy to handle, as we describe below when discussing geodesic
dilation.

We can adapt our algorithms to not allow feed-links that intersect the exterior
of P . We first compute the visibility polygon V (p) of p with respect to P . The
vertices of V (p) partition the edges of P into parts that are allowed to contain
q and parts that are not. The number of parts is O(n) in total, and they can be
computed in O(n) time.

We compute the upper envelopes exactly as before. Before we start scanning
the two envelopes, we add the vertices of P and also the vertices of the visibility
polygon to the two envelopes. The envelopes now have the property that between
two consecutive vertices, a feed-link is allowed everywhere or nowhere. During
the scan, we keep the maximum of the dilation functions and record the lowest
value that is allowed. The time complexity of our algorithms does not change.

We can also adapt our algorithms to use geodesic feed-links and geodesic
shortest distances. In this case the feed-link is a geodesic shortest path between
p and q, and the dilation of a point r on P is defined as the ratio of the graph
distance between r and p (necessarily via q) and the geodesic shortest path
between r and p.

By computing the shortest path tree of p inside P , we obtain the geodesic
shortest distances of p to every vertex of P , and hence can partition P into O(n)
parts, such that the first vertex on a geodesic shortest path to p is the same (this
first vertex can also be p itself) [11].

When we use cw-dist(q) and ccw-dist(q) to represent the location of q, we
use the length of the geodesic from q to p instead of |pq|, plus the clockwise or
counterclockwise distance to v0. But now a value of cw-dist(q) or ccw-dist(q) does
not necessarily represent a unique position of q anymore: when q traverses an
edge of P and the geodesic from q to p is along this edge in the opposite direction,
cw-dist(q) and ccw-dist(q) do not change in value. However, it is sufficient to
consider only the location of q that gives the shortest feed-link (if any such feed-
link is optimal, then the shortest one is optimal too). All other adaptations to
the algorithms are straightforward, and we obtain the same time complexities.

3 Number of Feed-Links vs. Dilation

In this section we study how many feed-links are needed to achieve constant
dilation. We immediately observe that there are simple polygons that need n/2
feed-links to achieve constant dilation, see Fig. 1. For convex polygons, we estab-
lish that two feed-links are necessary and sufficient to obtain constant dilation.
For realistic (“fat”) simple polygons, there are several definitions one can use
to capture realism ([4,5,8,9,17] and others). Most of these definitions are not
sufficient to guarantee constant dilation with a constant number of feed-links.
However, for (α, β)-covered polygons [8] we can show that a constant number of
feed-links suffices for constant dilation.
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3.1 Convex Polygons

Let P be the boundary of a convex polygon and let p be a point inside P . We
explore how many feed-links are necessary and sufficient to guarantee constant
dilation for all points on P .

One feed-link is not sufficient to guarantee constant dilation. Consider a rect-
angle with width w and height h < w, and let p be its center. One of the points
in the middle of the long sides will have dilation greater than 2w/h, which can
become arbitrarily large. Hence two feed-links may be necessary.

Two feed-links are also sufficient to guarantee constant dilation for all points
on P . In fact we argue that we can always choose two feed-links such that the
dilation is at most 3 +

√
3 ≈ 4.73. This bound is not far from the optimum,

since an equilateral triangle with p placed in the center has dilation at least
2 +

√
3 ≈ 3.73 for any two feed-links. To see that, observe that one of the sides

of the equilateral triangle does not have a feed-link attached to it (or only at a
vertex), which causes the middle of that side to have dilation at least 2 +

√
3.

t1

p

q

t2

r

l1

l2

π/3
se0

e2e1

Fig. 4. The smallest equilateral
triangle that contains P

Let q be the closest point to p on P . We
choose pq as the first feed-link and argue that
the dilation is now constant for all points in
some part of P which includes q. Then we
show how to place the second feed-link to
guarantee constant dilation for the remaining
part of P . Consider the smallest equilateral
triangle Δ that contains P and which is ori-
ented in such a way, that one of its edges con-
tains q. Let e0 be the edge of Δ containing
q, and let e1 and e2 be the other edges, in
clockwise order from e0 (see Fig. 4). By con-
struction, each edge of Δ is in contact with P .
Let t1 be a point of P in contact with e1, and
let t2 be a point of P in contact with e2.

Lemma 1. For any point r ∈ P [t2, t1], δq(r) ≤ 3 +
√

3 .

We prove Lemma 1 by arguing that μ(r, q) ≤ l1 + l2. The details can be found in
the full paper. The second feed-link connects p to the point q′ on P [t1, t2] closest
to p. Lemma 2 can be proven with similar arguments as Lemma 1.

Lemma 2. For any point r ∈ P [t1, t2], δq′(r) ≤ 3 +
√

3.

These two lemmas jointly imply

Theorem 3. Given the boundary P of a convex polygon and a point p inside it,
two feed-links from p to P are sufficient to achieve a dilation of 3 +

√
3.

We now consider the general setting of placing k feed-links, where k is a constant.
We prove that placing the feed-links at an equal angular distance of η = 2π/k
guarantees a dilation of 1 + O(1/k). To simplify the argument we choose k ≥ 6
(the result for smaller k immediately follows from the result for two feed-links).
Our proof uses the following lemma.
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Lemma 3. Let q1 and q2 be two points on the boundary P of a convex polygon
such that the angle ∠q1pq2 = η ≤ π/3. Then for all points r ∈ P [q1, q2], we have
δ(r)/ max(δ(q1), δ(q2)) ≤ 1 + η.

Note that pq1 and pq2 need not be feed-links in Lemma 3. The lemma implies
that for η = 2π/k we obtain the following result.

Theorem 4. Given the boundary P of a convex polygon and a point p inside it,
k feed-links from p to P are sufficient to achieve a dilation of 1 + O(1/k).

Approximation algorithm for convex polygons. We can use Lemma 3
to obtain a linear-time (1 + ε)-approximation algorithm to place one feed-link
optimally. We measure dilation only at 2π/ε points on P , and hence the running
time of the approximation algorithm is O(n+(1/ε) log(1/ε)) by Theorem 1. The
points at which we measure the dilation are chosen on P such that the angle
between two consecutive points measured at p is ε. Since Lemma 3 bounds the
dilation between two consecutive points, the theorem follows.

Theorem 5. For any ε > 0, given the boundary P of a convex polygon with n
vertices and a point p inside it, we can compute a feed-link that approximately
minimizes the maximum dilation from p to any point on P within a factor 1 + ε
in O(n + (1/ε) log(1/ε)) time.

3.2 Realistic Polygons

A constant number of feed-links should guarantee constant dilation for realistic
polygons. Therefore, we define a simple polygon to be feed-link realistic if there
are two constants δ > 1 and c ≥ 1, such that there exist c feed-links that achieve
a dilation of at most δ for any point on its boundary. Many different definitions
of realistic polygons exist in the literature. We show that most of them do not
imply feed-link realism. However, we also argue that polygons that are (α, β)-
covered [8] are feed-link realistic.

Consider the left polygon in Fig. 5. At least c feed-links are required to obtain
a dilation smaller than δ, if the number of prongs is c and their length is at least

p ≤ 1

≥ 2δ

p

≤ 1

Fig. 5. A β-fat polygon (left) and an adaptation (right) that require many feed-links
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δ times larger than the distance of their leftmost vertex to p. No feed-link can
give a dilation at most δ for the leftmost vertex of more than one dent. However,
the polygon is β-fat [5]. Definitions that depend on the spacing between the
vertices or edge-vertex distances will also not give feed-link realism, because the
left polygon in Fig. 5 can be turned into a realistic polygon according to such
definitions. We simply add extra vertices on the edges to get the right polygon: it
has edge lengths that differ by a factor of at most 2, it has no vertex close to an
edge in relation to the length of that edge, and it has no sharp angles. The extra
vertices obviously have no effect on the dilation. This shows that definitions like
low density (of the edges) [17], unclutteredness (of the edges) [4,5], locality [9],
and another fatness definition [18] cannot imply feed-link realism.

(α, β)-covered polygons. For an angle φ and a distance d, a (φ, d)-triangle
is a triangle with all angles at least φ and all edge lengths at least d. Let P be
the boundary of a simple polygon, let diam(P ) be the diameter of P , and let
0 < α < π/3 and 0 < β < 1 be two constants. P is (α, β)-covered if for each
point on P , an (α, β ·diam(P ))-triangle exists with a vertex at that point, whose
interior is completely inside P [8]. Furthermore, P is (α, β)-immersed if for each
point on P there is such a triangle completely inside P and one completely
outside P . For ease of description, we assume that diam(P ) = 1.

We use a result by Bose and Dujmović [3] that bounds the perimeter of P as
a function of α and β.

Lemma 4. The perimeter of an (α, β)-covered polygon P is at most c
β sin α , for

some absolute constant c > 0.

Also, we need a technical lemma that states that if the distance between two
points on P is short enough, then it is proportional to the Euclidean distance.

Lemma 5. If p and q can see each other on the inside of an (α, β)-covered
polygon P and μ(p, q) < β, then μ(p, q) < f(α) · |pq|, where f(α) ≤ 2π

α sin 1
4α

.

When P is (α, β)-immersed, each point on the boundary has an empty (α, β)-
triangle outside P as well as inside P . This implies that the lemma also holds
for two points p and q that can see each other on the outside of the polygon.

pP

(a)

pP

(b)

r

q pP

(c)

Fig. 6. (a) A polygon P that is (α, β)-immersed. (b) A feed-link to the closest point
on each boundary piece of length β. (c) The dilation of r is constant, because the
boundary distance between r and q is bounded by their Euclidean distance.
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Theorem 6. When P is (α, β)-immersed, we can place c
β2 sin α feed-links such

that the dilation of every point on P is at most 1 + 4π
α sin 1

4 α
.

Proof. We give a constructive proof. Given an (α, β)-immersed polygon and a
point p inside it, we split P into pieces of length β. By Lemma 4 there are
only c

β2 sin α pieces. On each piece, we place a feed-link to the closest point to p.
Fig. 6(b) shows the resulting feed-links in an example.

For each point r on P , we show that the dilation is constant. Consider the
piece of P containing r and the point q that is the closest point to p on that
piece, as in Fig. 6(c). The segment qr may intersect P in a number of points.
For each pair of consecutive intersection points, they can see each other either
inside or outside P . Since P is (α, β)-immersed, Lemma 5 applies to each pair,
and hence μ(q, r) ≤ f(α) · |qr|. Also, we know that |pq| ≤ |pr|. We conclude that
the dilation is bounded by

δq(r) =
|pq| + μ(q, r)

|pr| ≤ |pq| + f(α)|qr|
|pr|

≤ |pq| + f(α)(|pr| + |pq|)
|pr| ≤ |pr| + f(α)(|pr| + |pr|)

|pr| = 1 + 2f(α).

�	
When P is (α, β)-covered but not (α, β)-immersed, the proof no longer works
since there can be two points that see each other outside the polygon, in which
case Lemma 5 does not hold. However, we can still prove that (α, β)-covered
polygons are feed-link realistic, albeit with a different dependence on α and β.

Let C = 4πc
β2α sin α sin 1

2α
be a constant (depending on α and β). We incremen-

tally place feed-links until the dilation is at most C everywhere. In particular,
after placing the first i feed-links, consider the set of points on the boundary of
P that have dilation worse than C. If qi+1 is the point of this set that is closest
to p, then we let the next feed-link be pqi+1.

We now need to prove that this results in a constant number of feed-links. So,
say we placed k feed-links this way, and let their points be q1 . . . qk. Obviously,
we have |pqi| ≤ |pqj | if i < j.

Lemma 6. Unless k = 1, all points qi are inside the circle D centered at p of
radius R = 1

2β sin 1
2α.

Inside the circle D, there cannot be edges of P of length β or longer. So, each
point qi has an empty (α, β)-triangle ti with one corner at qi and the other two
corners outside D. Fig. 7(a) illustrates the situation, where the grey part is inside
P . Let di be the direction of the bisector of ti at qi. In the full paper we prove
that two directions di and dj differ by at least 1

2α.

Lemma 7. The angle between di and dj is at least 1
2α.

Theorem 7. Given the boundary P of an (α, β)-covered polygon and a point p
inside it, 4π

α feed-links are sufficient to achieve a dilation of 4πc
β2α sin α sin 1

2α
.
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p

R

α qi

(a)

pqi qj

di dj

s

(b)

di dj

s

qi qj

(c)

Fig. 7. (a) A circle around p of radius R contains points qi such that pqi is a feed-link.
(b) If the angle between two bisecting directions di and dj is small, the (α, β)-triangles
intersect in s. (c) The boundary length between qi and qj cannot be too long.

Proof. We place feed-links incrementally as described, until all points on P have
dilation at most C. By Lemma 7 there cannot be more than 4π

α feed-links,
because otherwise some pair qi and qj would have (α, β)-triangles with directions
di and dj whose angle is smaller than 1

2α. �	

4 Conclusions

We presented an efficient algorithm to compute an optimal feed-link for the
boundary of a simple polygon and a point inside it. Furthermore, we showed
that two feed-links are sometimes necessary and always sufficient to guarantee
constant dilation for convex polygons; by placing k feed-links, we can even guar-
antee a dilation of at most 1 + O(1/k). Finally, we considered the number of
feed-links necessary for realistic polygons, and proved that (α, β)-covered poly-
gons require only a constant number of feed-links for constant dilation. For other
definitions of realistic polygons such a result does provably not hold.

It is open whether the optimal feed-link can be placed in O(n log n) time or
even faster. It is also open whether a linear-time, (1+ε)-approximation algorithm
exists for computing an optimal feed-link in a simple polygon (we proved this
only for convex polygons).

A number of interesting and challenging extensions of our work are possi-
ble. Firstly, the optimal placement of more than one feed-link seems difficult.
Secondly, we did not consider the situation where several points lie inside P
and need to be connected via feed-links. Here we may or may not want to
allow one feed-link to connect to another feed-link. Thirdly, assume we are
given an incomplete road network N and several locations, which might fall
into different faces of the graph induced by N . How should we place feed-links
optimally?
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