
A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 273–292, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The History of WebML
Lessons Learned from 10 Years of

Model-Driven Development of Web Applications

Stefano Ceri, Marco Brambilla, and Piero Fraternali

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza L. Da Vinci, 32. I20133 Milano, Italy

{ceri,mbrambil,fraterna}@elet.polimi.it

Abstract. This work presents a retrospective analysis on the conceptual
modeling language for Web applications called WebML, which was first
defined about 10 years ago. WebML has been an incubator for research on
conceptual modeling, exploiting existing experiences in the field and
continuously addressing new challenges concerning abstractions, methods,
tools, and technologies. People working on WebML are spread among
universities, technology transfer centres, and a spin-off. In this paper, we
illustrate the history of WebML, we summarize the essence of the approach,
and we sketch the main research branches that spawned from the initial
proposal. We describe how new trends in research, application development,
methodology, and tool prototyping led to the continuous growth of the
modeling language.

1 Introduction

Data-intensive Web applications, i.e., software systems whose main purpose is to give
access to well-organized content, represented the first industrial application of the
Web, and are still predominant in terms of volume and commercial value. All
companies have an institutional site showing their business and describing their
offers, and many enterprises manage the relations with their customers through the
Web. Therefore, these applications have been a preferred target of development
methods and tools, which have been available for a long time.

Among them, the Web Modelling Language (WebML) [1] was defined, about 10
years ago, as a conceptual model for data-intensive Web applications. In the early
days of Web development, technologies were immature and in perpetual change; as a
reaction, WebML was conceived as a high level, implementation-independent
conceptual model, and the associated design support environment, called WebRatio
[9], has always been platform-independent, so as to adapt to frequent technological
changes.

While other conceptual models focus more on the early phases of the development
process (i.e., requirement specification [21]), WebML concentrates on the later
phases, starting from design, down to the implementation. As many other conceptual
modeling languages [14], WebML is based upon the principle of separation of

274 S. Ceri, M. Brambilla, and P. Fraternali

concerns: content, interface logics, and presentation logics are defined as separate
models of the application. The main innovation in WebML comes from the hypertext
modelling notation (patented in 2003), which enables the specification of Web pages
consisting of conceptual components (units) interconnected by conceptual links. The
hypertext model is drawn in a simple and quite intuitive visual notation, but has a
rigorous semantics, which allows the automatic transformation of diagrams into the
complete running code of a data-intensive Web application. Originally, the focus of
the design of WebML concentrated on the definition of a powerful set of units; with
time, we realized that units are just specific components, which can be defined and
adapted to the needs of any new technological development; instead, the essence of
the WebML hypertext model lies in the rules for assembling components and links
into a graph, and for inferring all the possible parameter passing rules from the
component interfaces and the link types. A well-formed graph guarantees the correct
data flow among units and dictates the proper component execution order when
computing the content of pages. Ultimately, computing a hypertext model amounts to
enacting a workflow of component execution driven by the user’s “clicking
behaviour”. In retrospective, the choices of link and component semantics were quite
adequate to the purpose and remained stable throughout ten years of language
evolution.

While the Web has gone through waves of innovation, new technological scenarios
have developed, and revolutionary concepts – such as enabling the interaction of
software programs rather than only humans – have emerged. Several new challenges
have been addressed within the WebML context, including:

• Web services and service-oriented architectures [11];
• Integration with business processes [5];
• Personalization, adaptation, context awareness, and mobility [6];
• Semantic Web and Semantic Web Services [4];
• Rich Internet Applications [3];
• Search-based applications;
• Support of reuse, multi-threading, and modularization.

This paper highlights the core nucleus of the WebML language, which has remained
stable over the years, and illustrates how we have dealt with each new challenge through
a four-step approach. The treatment of each extension is necessarily concise and visual,
for more details we refer readers to published papers and reports.

2 The Original WebML Language

The specification of a Web application in WebML [2] consists of a set of orthogonal
models: the application data model (an extended Entity-Relationship model), one or
more hypertext models (i.e., different site views for different types of users),
expressing the navigation paths and the page composition; and the presentation
model, describing the visual aspect of the pages. We focus on the hypertext model, as
the data model is not innovative; the presentation model is also quite interesting, as it
enables “dressing” a hypertext model to obtain Web pages with the desired layout and
look&feel for any rendition technology, but is also outside the scope of this paper.

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 275

2.1 The WebML Hypertext Model

A hypertext model consists of one or more site views, each of them targeted to a
specific user role or client device. A site view is a collection of pages (possibly
grouped into areas for modularization purposes); the content of pages is expressed by
components for data publishing (called content units); the business logic triggered by
the user’s interaction is instead represented by sequences of operation units, which
denote components for modifying data or for performing arbitrary business actions
(e.g., sending email). Content and operations units are connected by links, which
specify the data flow between them and the process flow for computing page content
and for enacting the business logic, in reaction to user’s generated navigation events.

Consider for instance a simple scenario: users browse a Home Page, from where
they can navigate to a page showing an index of loan products. After choosing one
loan, users are lead to a page with the loan details and the list of proposals for the
chosen loan. The WebML specification for the described hypertext is depicted in
Figure 1. The Home Page contains only some static content, which is not modeled. A
link from this page leads to the Loans page, containing an index of all loans,
graphically represented by means of an index unit labeled Loans Index. When the user
selects a loan from the index, he is taken to the Chosen Loan page, showing the loan
details. In this page, a data unit, labeled Loan Details, displays the attributes of the
loan (e.g. the company, the total amount and the rate), and is linked to another index
unit, labeled Proposals Index, which displays the plan options.

Home page Chosen Loan page

LoanProposals
[LoanToProposal]

Loan

Proposals
Index

Loan Details

Loans page

Loan

Loans Index Enter New
Proposal

Create Prop

LoanProposal

H

Connect

LoanToProposal

OK

Fig. 1. A WebML hypertext for browsing and updating information

This example contains units for publishing content (data and index units), which
display some of the attributes of one or more instances of a given entity.
Syntactically, each type of unit has a distinguished icon and the entity name is
specified at the bottom of the unit; below the entity name, predicates (called selectors)
express conditions filtering the entity instances to be shown. The example of Figure 1
also shows static content units, which display fixed content not coming from the
objects in the data model: this is the case of the Enter New Proposal entry unit, which
denotes a form for data entry. The hypertext model also illustrates the use of operation
units: the outgoing link of the Enter New Proposal entry unit activates a sequence of
two operation units: a create and a connect unit, which respectively create an instance
of the LoanProposal entity and connect it with a relationship instance to the Loan
entity.

WebML distinguishes between normal, transport, and automatic links. Normal
links (denoted by solid arrows) enable navigation and are rendered as hypertext
anchors or form buttons, while transport links (denoted by dashed arrows) enable
only parameter passing and are not rendered as navigable widgets. Automatic links

276 S. Ceri, M. Brambilla, and P. Fraternali

(denoted by an [A] icon) are normal links, which are automatically “navigated” by the
system on page load. Orthogonally, links can be classified as contextual or non-
contextual: contextual links transfer data between units, whereas non-contextual
links enable navigation between pages, with no associated parameters. Operation
units also demand two other types of links: OK links and KO links, respectively
denoting the course of action taken after success or failure in the execution of the
operation. In the example of Figure 1:

• The link from the Home page to the Loans page is non-contextual, since
it carries no information, and simply enables a change of page.

• The link from the Loans Index unit to the Loan Details unit is normal and
contextual, as it transports the ID of the loan chosen in the index unit and
displayed in the data unit.

• The link from the Loan Details data unit to the Proposals Index unit is a
transport link: when the user enters the Chosen Loan page, the Loan
Details unit is displayed and, at the same time, the Loan ID is transferred
to the Proposal Index unit, so that the content of the Proposals index unit
is computed and displayed without user's intervention. No navigable
anchor is rendered, because there is no need of the user’s interaction.

• The outgoing link of the Connect unit, labelled OK, denotes that after the
successful execution of the operation the Choose Loan page is displayed.

The content of a unit depends on its input links and local selectors. For instance,

the Loan ID is used to select those proposals associated with a given loan by the
relationship role LoanToProposal; this selection is expressed by the selector condition
[LoanToProposal] below the unit’s entity. In general, arbitrary logical conditions can
be used, but conjunctive expressions are easily presented in the diagrams, where each
conjunct is a predicate over an entity’s attribute or relationship role.

2.2 Semantics of the WebML Hypertext Model

As already mentioned, WebML is associated with a page computation algorithm
deriving from the formal definition of the model’s semantics (based on statecharts in
[10]). The essential point is the page computation algorithm, which describes how
the content of the page is determined after a navigation event produced by the user.
Page computation amounts to the progressive evaluation of the various units of a
page, starting from input parameters associated with the navigation of a link. This
process implies the orderly propagation of the value of link parameters, from an initial
set of units, whose content is computable when the page is accessed, to other units,
which expect input from automatic or transport links exiting from the already
computed units of the page.

In WebML, pages are the fundamental unit of computation. A WebML page may
contain multiple units linked to each other to form a complex graph, and may be
accessed by means of several different links, originating from other pages, from a unit
inside the page itself, or from an operation activated from the same page or from
another page. The content of a page must be computed or recomputed in the following
cases:

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 277

• When the page is entered through a link (contextual or non-contextual)
originating in another page; in this case the contents of all units of the
page are calculated afresh, based on the possible parameter values carried
by the link.

• When the user navigates an intra-page link and thus supplies some new
input to the destination unit of the link; in this case, part of the content of
the page is calculated based on the parameter values associated with the
intra-page link, but part of the content of the page is computed based on
the values of parameters existing prior to the navigation of the intra-page
link, so that past user’s choices are not lost when navigating the link.

• When an operation is invoked, ending with a link pointing back to the
same page: this case is similar to the navigation of an intra-page link, but
in addition the operation may have side effects on the content visualized
in the page, which may change the content displayed by the page.

The example in Figure 2 illustrates the three cases:

• When the ArtistIndex page is accessed through the non-contextual link
labeled Link1 or the Artist page is accessed through the contextual link
labeled Link2, the content of the entire destination page is computed
afresh, taking into account the possible input values associated with the
navigated link (e.g., the OID of the selected artist when Link 2 is
navigated).

• When the user selects a new album from the AlbumIndex unit, new
context information flows along the link labeled Link3 and determines
the album to be displayed in the AlbumData unit; at the same time, the
Artist displayed in the ArtistData data unit must be “remembered” and
redisplayed, because the input of the ArtistData unit is not directly
affected by the navigation of the intra-page link.

• When the delete operation is performed successfully and the page is re-
entered through the OK link Link4, the content of the ArtistData unit is
preserved, so to remember the past user’s choice, whereas the content of
the AlbumIndex unit and of the AlbumData unit is refreshed, so that the
deleted album no longer appears in the AlbumIndex unit and in the
AlbumData unit. If the delete operation fails, the KO link Link5 is
followed and the content of the AlbumData unit is refreshed using the
OID of the object that could not be deleted, and the content of the other
units is restored. This ensures that the previously selected artist, his/her
albums, and the details of the album tentatively deleted continue to be
displayed when the page is re-accessed after the failed operation.

The page computation process is triggered by any of the previously discussed
navigational events (inter-page link navigation, intra-page link navigation, operation
activation). Based on the navigated link, a set of parameter values is collected and
passed in input to the page, which determines the initial input for some of the page
units. The page computation algorithm starts by tagging as computable all context-
free units (e.g., units with no input parameters, like the ArtistIndex unit) and possibly

278 S. Ceri, M. Brambilla, and P. Fraternali

Fig. 2. Example of WebML Page with different access paths

the externally dependent units for which there are sufficient input values in the
parameters passed to the page (e.g., the ArtistData unit when Link2 is navigated).
Then, the computation proceeds by evaluating the units one after another, until all
possible units have been evaluated. The computation process exploits the propagation
of context along automatic and transport links, and a specificity rule telling which
alternative input should be considered when multiple choices are available for
evaluating the same unit.

The specificity rule introduces a partial order in parameter passing, therefore a
page computation is nondeterministic (but the WebRatio tool identifies such
situations and prompt designers to change the model to eliminate non-determinism).
Moreover, some hypertexts can be non-computable, due to circular dependencies
among units or pages, causing a deadlock in the assignment of input values to some
units. The complete description of the WebML hypertext model semantics is in
Chapter 5 of [8] and in [10].

2.3 The WebML Design Process

The WebML methodology exploits a formal design process, explained in Chapter 6
of [8], shown in Figure 3. The process includes the classic phases of requirement
analysis (thoroughly addressed by dedicated methods, such as [21]), data design,
hypertext design, and presentation design, followed by architecture design and
implementation. The 4-step procedure, from requirements to data, to hypertext, to
presentation design, can be iterated multiple times with the support of WebRatio,
which acts as a rapid prototyping tool; experience has shown that a crucial advantage
of using the model-driven approach comes from the ability to generate incremental
prototypes directly under the eyes of the application stakeholders. Web-specific data
design guidelines, based on the notion of the web mart as a standard ER schema that
is recurrent in Web applications, have also been proposed in [9].

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 279

HYPERTEXT MODELING

Business requirements

DATA MODELING

ARCHITECTURE
DESIGN

REQUIREMENTS
ANALYSIS

IMPLEMENTATIONTESTING AND EVALUATION

MAINTENANCE AND
EVOLUTION

PRESENTATION MODELING

Fig. 3. The WebML Development process

2.4 The Added Value of WebML

Before describing the extensions of the original WebML model, we wish to distill the
concepts that proved most valuable in the ten-year experience of development and
research with WebML. Our experience demonstrated that the true added value of
WebML stands in the following aspects:

• The choice of component-based design as the fundamental development
paradigm and the standardization of component specification, which allow
extending the language without altering its semantics.

• The use of links of different types, for specifying the “wiring” of components,
which can be assembled into pages and sequences of operations.

• Powerful and automatic inference rules for parameter matching, allowing the
designer to avoid explicit specification of the data carried by contextual links in
all cases in which they can be deduced from the context.

The result of these design principles is an easy-to-learn formalism: the hypertext
model consists of very few concepts (e.g., compared to UML): site views, areas,
pages, content units, operation units, and links. At the same time, the openness of the
implementation allows developers to enrich WebRatio with the components of their
choice, so to achieve an almost unlimited variety of effects.

The subsequent evolution of the model built upon these aspects, adding domain-
specific features to the core nucleus of the language. In retrospective, we have addressed
every new challenge by using a common approach, which indeed has become evident to
us during the course of time, and now is well understood and constitutes the base for all
new additions. For every new research direction, four different kinds of extensions are
designed, respectively addressing the development process, the content model, the
hypertext meta-model, and the tool framework:

• Extensions of the development process capture the new steps of the design that
are needed to address the new direction, providing as well the methodological
guidelines and best practices for helping designers.

• Extensions of the content model express domain-specific standard data schemas,
e.g., collections of entities and relationships, that characterize the applications in

280 S. Ceri, M. Brambilla, and P. Fraternali

the area of interest; the standard schema is connected with the application data
model, to enable an integrated use of domain objects and special-purpose data.

• Extension of the hypertext meta-model refine the standard WebML concepts to
capture the new abstractions required for addressing the new modelling
perspective; in this way, the core semantics of WebML is preserved, but
functionality is added by plugging in “libraries” of specialized concepts.

• Extensions of the tool framework introduce new modules in the open architecture
of WebRatio (specialized data elements, new content and operation units, novel
containers of model elements, etc.), implement wizards for expressing the
semantics of new components in terms of existing ones, and provide code
generation and runtime support for each new addition.

3 Service-Oriented Architectures

The first WebML extension discussed in this paper is towards the Service Oriented
Architectures [11]. Our extension includes four components:

• The extension to the development process and the definition of some
methodological guidelines for SOA design;

• A standard data schema for representing the services and the business processes
to be performed;

• New WebML units for covering Web service specification and invocation,
together with primitives for enforcing business process constraints;

• The support of the specified solutions through a process modeller, a translator of
processes into hypertext skeletons, and an XML-to-XML mapping tool.

The extension of the development process to SOA requires separating application

design from service design; the former addresses the front-end of a Web integration
application targeted to the user, while the latter focuses on provisioning well-designed
services, usable across different Web applications.

(a)

(b)

Fig. 4. Example of WebML hypertext model with invocation of remote service

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 281

The contet model for SOAs (not shown here for sake of brevity) supports the
description of Web Services according to WSDL, including the notions of services,
ports, and input/output messages.

Extensions to the hypertext model cover both Web Service publication and Web
Service consumption. Web Service publication is expressed as a novel container
(called Service View), which is analogous to a site view, but contains specifications of
services instead of pages. A service specification is denoted by a Port, which is a
container of the operations triggered upon invocation of the service.

Service invocation and reaction to messages are supported by specialized
components, called Web Service units. These primitives correspond to the WSDL
classes of Web service operations and comprise:

• Web service publication primitives: Solicit unit (representing the end-point of
a Web service), and Response unit (providing the response at the end of a Web
service implementation); they are used in a service view as part of the
specification of the computation performed by a Web Service.

• Web Service invocation primitives: Request-response and Request units; they
are used in site views, and denote the invocation of remote Web Services from
the front-end of a web application.

For instance, Figure 4 shows a hypertext that specifies a front-end for invoking a
web Service (Figure 4a) and the specification of the web Service within a port
container (Figure 4b).

In the Supply Area of Figure 4a, the user can access the SupplySearch page, in which
the SearchProducts entry unit enables the input of search keywords. The submission of
the form, denoted by the navigation of the outgoing link of the entry unit, triggers a
request-response operation (RemoteSearch), which builds the XML input requested by
the service and collects the XML response returned by it. From the service response, a
set of instances of the Product entity are created, and displayed to the user by means of
the Products index unit in the Products page; the user may continue browsing, e.g., by
choosing one of the displayed products and looking at its details.

Figure 4b represents the service view that publishes the RemoteSearch service
invoked by the previously described hypertext. The ProductManagementPort
contains the chain of operations that make up the service: the sequence starts with the
SearchSolicit unit, which denotes the reception of the message. Upon the arrival of
the message, an XML-out operation extracts from the service provider’s database the
list of desired products and formats it as an XML document. The service terminates
with the SearchResponse unit, which returns the response message to the invoker1.

For supporting service design, WebRatio has been extended with:

• The novel Web service units.
• The Service view and Port containers.

1 Service ports are an example of a WebML concept that has nothing to do with the user’s

interaction, which shows how the original target of the model (hypertext navigation) has been
generalized to cover new requirements. Even more radical shifts will be needed to deal with
semantic Web Services, as illustrated in the sequel.

282 S. Ceri, M. Brambilla, and P. Fraternali

• The runtime and code generator features necessary to produce the actual
executable code corresponding to the additional modeling primitives.

4 Workflow-Driven Applications for the Web

The Web has become a popular implementation platform for B2B applications, whose
goal is not only the navigation of content, but also the enactment of intra- and inter-
organization business processes. Web-based B2B applications exhibit much more
sophisticated interaction patterns than traditional Web applications: they back a
structured process, consisting of activities governed by execution constraints, serving
different user roles, whose joint work must be coordinated. They may be distributed
across different processor nodes, due to organizational constraints, design
opportunity, or existence of legacy systems to be reused. WebML has been extended
to cover the requirements of this class of applications [5], by:

• The integration in the development life-cycle of workflow-specific deign
guidelines;

• Two different models for representing the business processes;
• New design primitives (namely, WebML units) for enforcing business process

constraints;
• New tools for workflow-driven application design: a process modeller and a

translator of processes into hypertext skeletons.

The incorporation of business processes in WebML has been pursued in two
distinct, yet complementary, scenarios:

1) Static business process, i.e., processes defined once during the design phase
and then preserved for the entire application lifetime.

2) Dynamic business processes, in which the process schema is subject to
continuous evolution.

Some aspects are common to the two scenarios, while others differ significantly. In
the following, we will highlight the differences, when needed.

The WebML design process is extended with a new phase, business process
modeling, preceding data and hypertext design. In case of dynamic BP, changes to the
process are allowed at runtime too, and the system automatically adapts its behavior.

A content model for static processes, shown in Figure 5, represents meta-data
about the business processes. A process is represented by the Process entity,
associated with the ActivityType entity, representing the kinds of activities that can be
executed in the process. An instance of a process is modeled by the Case entity,
related to its Process (via the InstanceOf relationship) and to its activities (via the
PartOf relationship); entity ActivityInstance denotes the actual instances of activities
within cases.

With dynamic processes, the basic content model is completed by a few additional
entities and relationships that represent the sequence constraints between activities,
the branching and joining points, and the execution conditions. Thanks to the more
refined meta-data, the application can infer the process structure and execution status
at runtime and adapt to dynamic changes of the process schema.

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 283

User Metadata

ActivityType

Name
Description

User

Username
Password
...

Group

Name
...

0:N

1:1

Activity Instance

Status
StartTimeStamp
EndTimeStamp

Case

Status
Name
StartTimeStamp
EndTimeStamp

0:N 0:N

0:N

1:1 1:N

Assigned To

1:1

0:N

1:1

Process

Name
1:1 1:N

0:N

1:N
Default

Assigned To
PartOf

PartOf

Entity X
0:N

0:N

Related To

Application Data Model

1:1

0:N
InstanceOfInstanceOf

0:N 1:1
Executed By

Process Metadata

Entity Y

0:N

0:N

Related To

Entity Z

0:N

0:N

Related To

Fig. 5. Content model for the specification of a business process

 Activity Area2

A

 Activity Area1

A

... ...

Fig. 6. Two activity areas and the start and end links that denote the initiation and termination
of an activity

In case of static processes, the process structure is embodied in the topology of the

hypertext. The intuition is that the process progresses as the actors navigate the front-
end, provided that the hypertext model and the process metadata are kept in synch. To
this end, new primitives are added to the hypertext model, for specifying activity
boundaries (namely activity areas) and process-dependent navigation (namely
workflow links). Figure 6 shows some of these primitives: “Activity Areas” denote
groups of pages that implement the front-end for executing an activity; specialized
links represent the workflow-related side effects of navigation: starting, ending,
suspending, and resuming activities. Distributed processes deployed on SOAs can be
obtained by combining the workflow and Web Services primitives [5].

For dynamic business processes, the next activity to be executed is not statically
specified by an activity area, but is determined at runtime by a unit (called Next unit),
which encapsulates the process control logic. It exploits the information stored in the
process meta-data and log to calculate the current process status and the enabled state
transitions. It is associated with the current ActivityInstance, and needs the following
input parameters: caseID (the currently executed process instance ID), activityID (the
activity instance ID that has just terminated), and the conditionParameters (the values
required by the conditions to be evaluated). The Next unit finds all the process
constraints related to the specified activity instance, evaluates them according to the

284 S. Ceri, M. Brambilla, and P. Fraternali

defined precedence constraints (i.e., sequence, AND-join, etc.), and, if the conditions
hold, enables the execution of the subsequent activities in the workflow. If the
activities are automatic, they are immediately started. If they involve human choice,
the application model consists of the site view for the user to choose when to start the
activity. An example of Next unit can be found in Section 8, dealing with Search-
based Web applications.

For supporting the design of workflow-driven Web applications, several tool
extensions have been prototyped and are currently being ported to the commercial
version of WebRatio:

• A workflow modeling editor for specifying business processes in the BPMN
notation.

• Model transformations that translate a business process model into a skeleton of
WebML hypertext model.

• The abovementioned operation units and special-purpose links for implementing
the static and dynamic workflow enactment.

5 User Personalization and Context Awareness

WebML has been also applied to the design of adaptive, context-aware Web
applications, i.e. applications which exploit the context and adapt their behaviour to
usage conditions and user’s preferences [6].

In these applications, the design process is extended by a preliminary step
dedicated to the modeling of the user profiles and of the contextual information.

1:N 1:N
UserComment
Comment
Rate
Title
Comment_Date

Personalization
sub-schema Basic user sub-schema

Activity
Name
Handycap
Description

0:N

Context sub-schema

Group
GroupName

Module
ModuleID

Movie
Title
Year
Description
Official _Site

1:N0:N
User

UserName
Password
EMail

0:N 1:N

1:1

0:N

0:N

Cinema
Name
Address
Description
Picture

Location
MinLon
MaxLon
MinLat
MaxLon

1:1
0:N

Device
CPU
InputDevice
Display
Memory

1:N

1:1

1:N 1:1

Fig. 7. Three models representing user, personalization, and context data

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 285

User and context requirements are described by means of three different models,
complementing the application data (see Figure 7):

• The user model describes data about users and their access rights to the domain
objects. In particular, entity User expresses a basic user profile, entity Group
enables access rights for groups of users, and entity Module allows users and
groups to be selectively granted access to any hypertext element (site views,
pages, individual content units, and even links).

• The personalization model associates application entities with the User entity by
means of relationships denoting user preferences or ownership. For example, the
relationship between the entities User and UserComment in Figure 7 enables
the identification of the comments s/he has posted, and the relationship between
the entities User and Movie represents the preferences of the user for specific
movies.

• The context model includes entities such as Device, Location and Activity, which
describe context properties relevant to adaptivity. Context entities are connected
to the User entity, to associate each user with her/his (personal) context.

During hypertext design, context-awareness can be associated with selected pages,
and not necessarily with the whole application. Location-aware pages are tagged
with a C-label (standing for “Context-aware”) to distinguish them from conventional
pages. Adaptivity actions are clustered within a context cloud which must be executed
prior to the computation of the page. Clouds typically includes WebML operations
that read the personalization or context data and then customize the page content or
modify the navigation flow defined in the model.

A prototype extension of WebRatio generates pages with adaptive business logic;
such a prototype has been used in some applications but has not been included yet
into the commercial version.

Siteview

Context-aware Page

Source

Data Unit

P: Context Parameter

OID: Object
 Identifier

C

Conventional
Page 1

Conventional
Page 2

Fig. 8. Model with a context-aware page, labelled with a “C” and associated with a “context
cloud”

286 S. Ceri, M. Brambilla, and P. Fraternali

6 Semantic Web Services

Traditionally, the service requestor and service provider are designed jointly and then
tightly bound together when an application is created. The emerging field of Semantic
Web Services (SWS) [26] provides paradigms for semantically enriching the existing
syntactic descriptions of Web services; then, the service requestor can search, either at
design or at run time, among a variety of Web-enabled service providers, by choosing
the service that best fits the requestor’s requirements. Such a flexible binding of
requestor and providers allows for dynamic and evolving applications to be created,
utilizing automatic resource discovery, selection, mediation and invocation.

We extended WebML in [4] so as to generate, on top of conventional models (of:
processes, data, services, and interfaces), a large portion of the semantic descriptions
required by the SWS in a semi-automatic manner, thus integrating the production and
maintenance of semantic information into the application generation cycle.

To address the new SWS requirements, we defined a process for semantic service
design by extending the SOA design process with two additional tasks:

• Ontology Importing, for reusing existing ontologies that may be exploited for
describing the domain of the Web application under development.

• Semantic Annotation, for specifying how the hypertext pages or services can be
annotated using existing ontological knowledge.

At the conceptual level, the content model for Semantic Web applications

addresses the integration of existing third-party ontologies in the conceptual data
model. At the logical level, imported ontological data can be either copied into an
application-specific implementation of the E-R model (typically a relational database)
or maintained in remote semantic repository and queried on demand.

The basic WebML primitives have been extended with components for ontology
querying and navigation, exploiting the expressive power of ontological languages
(inspired by SPARQL and RDF-S). These units allow queries on classes, instances,
properties, and values; checking the existence of specific concepts; and verifying
whether a relationship holds between two resources. Further units import content
from an ontology and return the RDF description of a given portion of the ontological
model. Operations such as lifting and lowering have been introduced too, by
extending the XML2XML mapping components already developed in the context of
SOAs. These units, together with the standard WebML primitives and the SOA
extensions, allow designers to specify new kinds of applications. For instance, it is
possible to define WSMO mediators [4], as demonstrated in the context of the SWS
Challenge.

The SWS primitives have been implemented in two versions: when ontological
data are maintained in an external repository, the implementation exploits ontological
query languages; when ontological data are integrated within an internal relational
source, the implementation is directly mapped to such source.

The WebRatio development tool has been extended with prototypical automatic
generators of WSMO-compliant descriptions (goals, choreographies, capabilities,
and mediators) from the models already available in WebML, i.e., business processes,
content models, and service models. The automatically generated annotations cannot

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 287

express the full semantics of services and applications, but they provide an initial
skeleton, which can be completed manually.

7 Rich Internet Applications

Due to the increasingly complex requirements of applications, current Web
technologies are starting to show usability and interactivity limits. Rich Internet
Applications (RIAs) have been recently proposed as the response to such drawbacks;
they are a variant of Web-based systems minimizing client-server data transfers and
moving the interaction and presentation layers from the server to the client. While in
traditional data-intensive Web applications content resides solely at the server-side, in
the form of database tuples or as user session-related main memory objects, in RIAs
content can also reside in the client, as main memory objects with the same visibility
and duration of the client application, or even, in some technologies, as persistent
client-side objects. Also, in RIAs more powerful communication patterns are possible,
like server-to-client message push and asynchronous event processing. WebML has
been extended with the aim of reducing the gap between Web development
methodologies and the RIA paradigm, leveraging the common features of RIAs and
traditional Web applications [3].

The design process is extended by defining the allocation to the client or server
side of data elements (entities and relationships) and hypertext components (pages,
content and operation units), and by establishing the relevant client-server
communication patterns (consisting of policies for event notification, recipient
filtering, and synchronous/asynchronous event processing).

In the content model, concepts are therefore characterized by two different
dimensions: their location, which can be the server or the client, and their duration,
which can be persistent or temporary. For example, in Figure 9 the Wish Lists entity is
tagged as client (C) and temporary (unfilled icon) to denote that the data are
temporarily stored at the client side, for the duration of the application run.

Similarly, the notion of page in WebML has been extended, by adding client
pages, which incorporate content or logics managed (at least in part) by the client;
their content can be computed at the server or client side, whereas presentation,
rendering and event handling occur at the client side. The events generated by the
user’s interaction can be processed locally at the client or dispatched to the server.
Event handling operations are also introduce (send event and receive event) which
enable the expression of flexible communication patterns, including real-time

Fig. 9. Example of RIA-enabled WebML data (a) and hypertext model (b)

288 S. Ceri, M. Brambilla, and P. Fraternali

collaboration, server push, and asynchronous event processing. Classical WebML
content units are also extended with the possibility of specifying that the source
entity, the selector conditions, or ordering clauses be managed either on the server or
on the client. Figure 9 shows a client page which contains an index unit with the
population fetched from the server, but filtered using a predicate (price<=max)
computed on the client. In order to fit the more flexible way in which RIAs handle the
content of pages, the semantics of page computation has also been revised.

The RIA modelling primitives have been implemented in WebRatio through a
prototypical code generator for the client-side pages, exploiting an open source RIA
platform (www.openlaszlo.org) for handling events and managing the computation of
client-side content units and operations. Each content unit is mapped into: (1) a view
component for rendering, (2) a model component for data management, business
logic, and server communication, (3) possibly a service on the server-side for data
query and result formatting in XML. A subset of the prototyped features, including
AJAX behaviours and client-side event management, is already available in the
commercial version of WebRatio.

8 Related Work

Web Application Modeling. Several methodologies and notations address
conceptual modeling of Web applications [31]. Among more recent projects, WebML
is closer to those based on conceptual methodologies like W2000 [16] and OO-
HMETHOD [29] (based on UML interaction diagrams), Araneus [35, 36], Strudel
[27] and OOHDM [40]. The WAE UML extension by Conallen [23] focuses mainly
on implementation and architectural issues of Web application design. Commercial
vendors are proposing tools for Web development, however most of them have only
adapted to the Web environment modeling concepts borrowed from other fields.
Among them, Oracle JDeveloper 10g [38], Code Charge Studio [22], Rational Rapid
Developer [39], and ArcStyler [13], which also features business process to Web
model translation and direct implementation.

Business Processes. Several existing platforms and languages allow integrating the
design of Web applications and business processes. Among the existing models, we
can mention Araneus [36], that has been extended with a workflow conceptual model,
allowing the interaction between the hypertext and an underlying workflow
management system. The Process Modeling Language (PML) [37], a lightweight
formalism similar to BPMN that can be automatically compiled into a simple Web-
based application, starting from imperative programming-style syntax. Among the
Web design proposals, OO-H and UWE have specifically addressed the integration of
process and navigation modeling. The authors of OO-H and UWE propose a joint
approach [34] to the integration of process and navigation modeling. In particular,
both methodologies converge in the requirements analysis phase, where UML Use
Case, Class, and Activity Diagrams are exploited to capture the requirements, and
then, the methods slightly diverge in the design phase. In OOHDM [40], the content
and navigation models are extended with activity entities and activity nodes
respectively, represented by UML primitives. In WSDM [25], the process design is
driven by the user requirements and is based on the ConcurTaskTrees notation.

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 289

Web Services. A flurry of activity is currently taking place in the field of Web
service description [44]. Several XML languages for orchestration and choreography
of services have been proposed (e.g., BPEL4WS [19]). WebML is expressive enough
to capture any BPEL4WS-style service composition pattern [5]. The ActiveXML
system [15] manages XML documents including calls to services, but ignoring Web
interfaces and complex processes.

Semantic Web. Several traditional Web design methodologies (like OOHDM [41])
and new approaches (like Hera [43]) are focusing on Semantic Web applications.
MIDAS is a framework based on MDA for Semantic Web applications [12]. Research
efforts are converging on the proposal of combining Semantic Web Services (SWS) and
Business Process Management (BPM) to create one consolidated technology, called
Semantic Business Process Management (SBPM) [33]. Our extensions to the Semantic
Web Services benefit from the WSMO [26] framework for handling Semantic Web
Services.

Adaptivity and context-awareness. Within the domain of theWeb, so-called
adaptive hypermedia systems [20] address advanced adaptation and personalization
mechanisms, and recent research efforts also address the special needs of mobileWeb
applications and portable device characteristics. HyCon [32], for example, is a
platform for the development of context-aware hypermedia systems with special
emphasis on location-based services. AHA! [24] is a user modeling and adaptation
tool originally developed in the e-learning domain. Other works [18] address the fast
development of context-aware (Web) applications along a technological, database-
driven approach, combining a universal context engine in combination with a suitable
content management system [30]. On top of the Hera project, Fiala et al. [2004]
propose implementation and deployment of component-based, adaptive Web
presentations. [17] extend the previous approach by addressing the lack of dynamism.

RIAs. Some approaches address the complexity of RIAs through the exploitation of
state models for interface design. Exploiting MDA life-cycle is a missing feature in
the related work. Our approach is also different with respect to other recent proposals
in the Web Engineering field to represent the RIA foundations (e.g. [42]), because we
include a more abstract level of representation of states and events.

9 Conclusions

The “WebML approach” has acted as a framework for continuous innovation and
exploration of new research directions. This is made possible by a unique
combination of environmental conditions:

• Availability of well-defined conceptual models;
• Extensibility of the model thanks to a plug-in based structure;
• Availability of a CASE tool for fast prototyping of application and easy

integration of new features and components;
• Formally defined development process for Web applications;
• Strong link between the research (mostly performed in university) and the

technology transfer into an industrial-strenght product (performed within a spin-off);

290 S. Ceri, M. Brambilla, and P. Fraternali

• Interactions with real world requirements, enabled by interaction with customers
of the spin-off.

• Participation to the international research community, through experience and
people exchange and several EU-funded projects.

This mix of ingredients has allowed us to follow our own pathway to innovation in
conceptual modeling.

Wide adoption of the approach has been secured thanks to low learning barrier to
the newcomers and availability of suitable tool support. Basic modelling skills are
usually taught in 6 hours of academic lessons, and the full training program for
certified professionals requires a total of 8 days. On-the-field statistics estimate that 2
to 3 months are needed for enabling full productivity at industrial level. Once this is
achieved, high efficiency is granted in the development process, thanks to automatic
code generation that reaches 90% of the total software artifacts in typical industrial
applications [2].

Adoption of WebML can be inferred from the spreading of the associated
WebRatio toolsuite. The WebRatio company registered more than 27,000 downloads
of the tool since its first release (among them, more than 7,500 of the last Eclipse-
based release, WebRatio 5). 70 companies adopted the commercial version of the tool
for medium-to-large development projects and 158 universities subscribed to the
academic program, that currently involves more than 5,900 students and researchers
worldwide.

Acknowledgements

We wish to thank all the people who work for developing WebML within the
“Database and Web” group at Politecnico di Milano and the developers of the Web
Models spin-off.

References – WebML

[1] Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web
Applications Design and Development with WebML and WebRatio 5.0. TOOLS, pp.
392–411 (2008), http://www.webratio.com/

[2] Acerbis, R., Bongio, A., Brambilla, M., Tisi, M., Ceri, S., Tosetti, E.: Developing
eBusiness solutions with a model driven approach: The case of acer EMEA. In: Baresi,
L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 539–544.
Springer, Heidelberg (2007)

[3] Bozzon, A., Comai, S., Fraternali, P., Toffetti Carughi, G.: Conceptual Modeling and
Code Generation for Rich Internet Applications. In: International Conference on Web
Engineering, pp. 353–360. Springer, Heidelberg (2006)

[4] Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E.: Model-Driven Design and
Development of Semantic Web Service Applications. ACM TOIT 8(1) (2008)

[5] Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web
Applications. ACM TOSEM 15(4) (2006)

[6] Ceri, S., Daniel, F., Matera, M., Facca, F.: Model-driven Development of Context-Aware
Web Applications. ACM TOIT 7(1) (2007)

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 291

[7] Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. WWW9 / Computer Networks 33 (2000)

[8] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, San Francisco (2002)

[9] Ceri, S., Matera, M., Rizzo, F., Demaldé, V.: Designing Data-Intensive Web Applications
for Content Accessibility using Web Marts. Communications of ACM 50(4), 55–61
(2007)

[10] Comai, S., Fraternali, P.: A Semantic Model for Specifying Data-Intensive Web
Applications Using WebML. In: Semantic Web Workshop, Stanford, USA (July 2001)

[11] Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven Design
and Deployment of Service-Enabled Web Applications. ACM TOIT 5(3) (2005)

References – Related Work

[12] Acuña, C.J., Marcos, E.: Modeling semantic web services: a case study. In: Proceedings
of the 6th International Conference on Web Engineering (ICWE 2006), Palo Alto,
California, USA, pp. 32–39 (2006)

[13] ArcStyler, http://www.arcstyler.com
[14] Brodie, M., Mylopoulos, J., Schmidt, J. (eds.): On Conceptual Modelling: Perspectives

from Artificial Intelligence, Databases and Programming Languages. Springer,
Heidelberg (1984)

[15] Abiteboul, S., Bonifati, A., Cobéna, G., Manolescu, I., Milo, T.: Dynamic XML
Documents with Distribution and Replication, SIGMOD (2003)

[16] Baresi, L., Garzotto, F., Paolini, P.: From Web Sites to Web Applications: New Issues for
Conceptual Modeling. In: Mayr, H.C., Liddle, S.W., Thalheim, B. (eds.) ER Workshops
2000. LNCS, vol. 1921, pp. 89–100. Springer, Heidelberg (2000)

[17] Barna, P., Houben, G.-J., Frasincar, F.: Specification of Adaptive Behavior Using a
General-Purpose Design Methodology for Dynamic Web Applications. In: De Bra,
P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 283–286. Springer, Heidelberg
(2004)

[18] Belotti, R., Decurtins, C., Grossniklaus, M., Norrie, M.C., Palinginis, A.: Interplay of
content and context. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS,
vol. 3140, pp. 187–200. Springer, Heidelberg (2004)

[19] BPEL4WS: Business Process Execution Language for Web Services,
http://www.ibm.com/developerworks/Webservices

[20] Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Model and
User-Adapted Interaction 6(2-3), 87–129

[21] Castro, J., Kolp, M., Mylopoulos, J.: A requirements-driven development methodology.
In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp.
108–123. Springer, Heidelberg (2001)

[22] Code Charge Studio 2.3, http://www.codecharge.com/studio
[23] Conallen, J.: Building Web Applications with UML, October 2002. Addison-Wesley,

Reading (2002)
[24] De Bra, P., Houben, G.-J., Wu, H.: AHAM: a Dexter-based Reference Model for

Adaptive Hypermedia. In: HYPERTEXT 1999: Proceedings of the tenth ACM
Conference on Hypertext and hypermedia: returning to our diverse roots, pp. 147–156
(1999)

[25] De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using
WSDM. In: Third International Workshop on Web Oriented Software Technology,
Oviedo 2003, pp. 1–12 (2003)

292 S. Ceri, M. Brambilla, and P. Fraternali

[26] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue,
J.: Enabling Semantic Web Services – The Web Service Modeling Ontology. Springer,
Heidelberg (2006)

[27] Fernandez, M.F., Florescu, D., Kang, J., Levy, A.Y., Suciu, D.: Catching the Boat with
Strudel: Experiences with a Web-Site Management System. In: SIGMOD 1998, pp. 414–
425 (1998)

[28] Fiala, Z., Hinz, M., Houben, G.-J., Frasincar, F.: Design and Implementation of
Component-based Adaptive Web Presentations. In: ACM SAC, pp. 1698–1704

[29] Gómez, J., Cachero, C., Pastor, O.: Conceptual Modeling of Device-Independent Web
Applications. IEEE MultiMedia 8(2), 26–39 (2001)

[30] Grossniklaus, M., Norrie, M.C.: Information Concepts for Content Management. In:
WISE Workshops, pp. 150–159

[31] Fraternali, P.: Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey. ACM Computing Surveys 31(3), 227–263 (1999)

[32] Hansen, F.A., Bouvin, N.O., Christensen, B.G., Grønbæk, K., Pedersen, T.B., Gagach, J.:
Integrating the Web and the World: Contextual Trails on the Move. In: Proc. of ACM-
Hypertext 2004, pp. 98–107 (2004)

[33] Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business
Process Management: A Vision Towards Using Semantic Web Services for Business
Process Management. In: Proceedings of the IEEE ICEBE 2005, Beijing, China, October
18-20, 2005, pp. 535–540 (2005)

[34] Koch, N., Kraus, A., Cachero, C., Melia, S.: Integration of Business Processes in Web
Application Models. Journal of Web Eng. 3(1), 22–49 (2004)

[35] Mecca, G., Merialdo, P., Atzeni, P., Crescenzi, V.: The (Short) Araneus Guide to Web-
Site Development. In: WebDB (Informal Proceedings), pp. 13–18 (1999)

[36] Merialdo, P., Atzeni, P., Mecca, G.: Design and development of data-intensive Websites:
the Araneus approach. ACM TOIT 3(1), 49–92 (2003)

[37] Noll, J., Scacchi, W.: Specifying process-oriented hypertext for organizational
computing. Journal of Network and Computer Applications 24, 39–61 (2001)

[38] Oracle, Oracle Developer Suite, JDeveloper 10g, http://www.oracle.com/tools
[39] Rational, Rational Rapid Developer,

 http://www.ibm.com/software/awdtools/rapiddeveloper
[40] Rossi, L., Schmid, H., Lyardet, F.: Engineering Business Processes in Web Applications:

Modeling and Navigation Issues. In: Third International Workshop on Web Oriented
Software Technology, Oviedo 2003, pp. 81–89 (2003)

[41] Schwabe, D., Rossi, G.: The Object-Oriented Hypermedia Design Model.
Communications of the ACM 38(8), 45–46

[42] Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the Interface of Rich
Internet Applications. In: Latin-American Conference on the WWW, pp. 144–153. IEEE,
Los Alamitos (2007)

[43] Vdovjak, R., Frasincar, F., Houben, G.-J., Barna, P.: Engineering semantic web
information systems in Hera. Journal of Web Engineering 2(1-2), 3–26 (2003)

[44] Web Services Description Language 1.1, W3C Note (March 2001)

	The History of WebML
	Introduction
	The Original WebML Language
	The WebML Hypertext Model
	Semantics of the WebML Hypertext Model
	The WebML Design Process
	The Added Value of WebML

	Service-Oriented Architectures
	Workflow-Driven Applications for the Web
	User Personalization and Context Awareness
	Semantic Web Services
	Rich Internet Applications
	Related Work
	Conclusions
	References – WebML

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

