
Malware: From Modelling to Practical

Detection�

R.K. Shyamasundar, Harshit Shah, and N.V. Narendra Kumar

School of Technology and Computer Science
Tata Institute of Fundamental Research

Homi Bhabha Road, Mumbai 400005, India
{shyam,harshit,naren}@tcs.tifr.res.in

Dedicated to the memory of
Amir Pnueli: 1941-2009

A Computer Science Pioneer and A Great Human being

Abstract. Malicious Software referred to as Malware refers to a soft-
ware that has infiltrated to a computer without the authorization of the
computer (or the owner of the computer). Typical categories of mali-
cious code include Trojan Horses, viruses, worms etc. Malware has been
a major cause of concern for information security. With the growth in
complexity of computing systems and the ubiquity of information due to
WWW, detection of malware has become horrendously complex. In this
paper, we shall survey the theory behind malware to provide the chal-
lenges behind detection of malware. It is of interest to note that the power
of the malware (or for that matter computer warfare) can be seen in the
theories proposed by the iconic scientists Alan Turing and John von Neu-
mann. The malicious nature of malware can be broadly categorized as
injury and infection analogously in the epidemiological framework. On
the same lines, the remedies can also be thought of through analogies
with epidemiological notions like disinfection, quarantine, environment
control etc. We shall discuss these aspects and relate the above to notions
of computability.

Adleman in his seminal paper has extrapolated protection mecha-
nisms such as quarantine, disinfection and certification. It may be noted
that most of the remedies in general are undecidable. We shall discuss
remedies that are being used and contemplated. One of the well-known
restricted kind of remedies is to search for signatures of possible malwares
and detect them before getting it through to the computer. Large part of
the current remedies rely on signature based approaches that is, heavy
reliance on the detection of syntactic patterns. Recent trends in security
incidence reports show a huge increase in obfuscated exploits; note that
in the majority of obfuscators, the execution behaviour remains the same
while it can escape syntactic recognitions. Further, malware writers are
using a combination of features from various types of classic malwares
such as viruses and worms. Thus, it has become all the more necessary to

� The work was partially supported under Indo-Trento Promotion for Advanced
Research.

T. Janowski and H. Mohanty (Eds.): ICDCIT 2010, LNCS 5966, pp. 21–39, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

22 R.K. Shyamasundar, H. Shah, and N.V.N. Kumar

take a holistic approach and arrive at detection techniques that are based
on characterizations of malware behaviour that includes the environment
in which it is expected to execute.

In the paper, we shall first survey various approaches of behavioural
characterization of malware, difficulties of virus detection, practical virus
detection techniques and protection mechanisms from viruses. Towards
the end of the paper, we shall briefly discuss our new approach of detect-
ing malware via a new method of validation in a quarantine environment
and show our preliminary results for the detection of malware on systems
that are expected to carry a priori known set of software.

1 Introduction

Malicious code is any code that has been modified with the intention of harming
its’ usage/user. Informally, destructive capability of malware is assessed based on
how well it can hide itself, how much loss it can inflict on the owner/user of the
system, how rapidly it can spread, etc. Malware attacks result in tremendous
costs to an organization in terms of cleanup activity, degraded performance,
damage to its reputation, etc. Among some of the direct costs incurred are,
labour costs to analyze and cleanup infected systems, loss of user productivity,
loss of revenue due to direct losses or degraded performance of system, etc.
According to a report on financial impact of malware attacks [35], the direct
damages incurred in 2006 were USD 13 billion. Although the trend shows a
decline in direct damages since 2004 (direct damages in 2004 and 2005 were
USD 17.5 billion and USD 14.2 billion respectively), this decline is attributed
to a shift in the focus of malware writers from creating damaging malware to
creating stealthy, fast-spreading malware so that infected machines can be used
for sending spams, stealing credit-card numbers, displaying advertisements or
opening a backdoor to an organization’s network. This increase in the indirect
and secondary damages (that are difficult to quantify) explains why malware
threat has worsened in recent years despite a decline in direct damages.

Malware can be primarily categorized [15] as follows:

– Virus - Propagates by infecting a host file.
– Worm - Self-propagates through e-mail, network shares, removable drives,

file sharing or instant messaging applications.
– Backdoor - Provides functionality for a remote attacker to log on and/or

execute arbitrary commands on the affected system.
– Trojan - Performs a variety of malicious functions such as spying, stealing in-

formation, logging key strokes and downloading additional malware - several
further sub categories follow such as infostealer, downloader,dropper,rootkit
etc.

– Potentially Unwanted Programs (PUP) - Programs which the user may con-
sent on being installed but may affect the security posture of the system
or may be used for malicious purposes. Examples are Adware, Dialers and
Hacktools/hacker tools (which includes sniffers, port scanners, malware con-
structor kits, etc.)

Malware: From Modelling to Practical Detection 23

– Other - Unclassified malicious programs not falling within the other primary
categories.

The breakdown of malware as per the study reported in [15], is summarized in
Table 1. It shows that Trojan comprised a major class of malware in 2008. This is
indicative of attacker’s preference to infect machines so that a host of malicious
activities (advantageous to the attacker) can be launched from them. Signature
based scanning techniques for malware detection are highly inadequate. With
increased sophistication in detection techniques, stealth techniques employed by
malware writers have also witnessed huge sophistication.

Table 1. 2008 Malware trends

Malware Class Percentage

Trojan 46

Other 17

Worm 14

Backdoor 12

PUP 6

Virus 5

The theory of computer viruses was developed much before the actual in-
stances of it were seen in wild. The foundations were laid by Cohen’s formal
study [10] of computer viruses based on the seminal theory of self-reproducing
automata invented by John von Neumann [26]. In this paper, we first survey1

some of the important theoretical results on computer viruses, several detection
techniques, and protection mechanisms. Finally, we briefly discuss our recent
study for detecting the presence of malwares in systems like embedded systems
where we know a priori the software that is loaded in them.

2 Formal Approaches to Virus Characterization

Informally, a virus can be defined as any program that propagates itself by
infecting a host file (trusted by the user). The infected host file when executed,
in addition to performing its’ intended job it also selects another program and
infects it thereby spreading the infection.

Cohen [10] was the first to formalize and study the problem of computer
viruses. The following definition intuitively captures the essence of a virus as
defined by Cohen [10].

Definition 1. A computer virus is a program that can infect other programs,
when executed in a suitable environment, by modifying them to include a possibly
evolved copy of itself.
1 For an excellent detailed exposition of computer viruses from theory to practice, the

reader is referred to [14].

24 R.K. Shyamasundar, H. Shah, and N.V.N. Kumar

We now present the pseudo-program of a possible structure of a computer virus
as presented in [9].

program virus:=
{1234567;

subroutine infect-executable:=
{loop: file = get-random-executable-file;
if first-line-of-file = 1234567 then goto loop;
prepend virus to file;
}

subroutine do-damage:=
{whatever damage is to be done}

subroutine trigger-pulled:=
{return true if some condition holds}

main-program:=
{infect-executable;
if trigger-pulled then do-damage;
goto next;}

next:}

Although the above pseudo-program of a virus includes a subroutine to per-
form damage, the ability to perform damage is not considered a vital character-
istic of a virus by Cohen.

Cohen’s formal definition of a virus was based on the Turing machine com-
puting model. The possibility of a virus infection comes from the theory of
self-reproducing automata defined by Jon Von Neumann [26]. Every program
that gets infected can also act as a virus and thus, the infection can spread
throughout a computer system or a network.

Cohen identifies the ability to infect as the key property of a virus, thus
allowing it to spread to the transitive closure of information sharing. Given the
widespread use of sharing in current computer systems, viruses can potentially
damage a large portion of the network. Recovering from such a damage will be
extremely hard and perhaps often impossible. Thus, it is of great importance to
detect and protect systems from viruses.

Cohen’s formalization was remarkable, because it captures the intuition that
a program is a virus only when executed in a suitable environment. However,
Cohen’s formal definition does not fully capture the relationship between a virus
and a program infected by that virus. Soon after Cohen’s formalization of viruses,
Adleman (Cohen’s Ph.D advisor) proposed a formalization of viruses using re-
cursive functions computing model. Before providing Adleman’s definition of
viruses, let us set up some basic notation and concepts as given in Adleman [1].

Malware: From Modelling to Practical Detection 25

A virus can be thought of as a program that transforms (infects) other
programs.

Definition 2. If v is a virus and i is any program, v(i) denotes the program i
upon infection by virus v

A system on which a program is executing can be characterized by giving the
set of data and programs that are present in the system. A program can be
thought of as a state transformer. If i is a program, d is a sequence of numbers
that denotes the data in a system and p is a sequence of numbers that denotes
the programs in a system then i(d, p) denotes the state resulting when program
i executes in the system. Together d and p tell us the state of the system.

Definition 3. We say that state (d1, p1) is v-related to state (d2, p2), denoted
(d1, p1) ∼=v (d2, p2) iff

– d1 = d2 and
– p1 �= p2 i.e. p1 and p2 differ
– number of programs in p1 and p2 are the same and
– either the ith program in p1 and the ith program in p2 are the same or the

ith program in p2 results when the ith program in p1 is infected by virus v

Intuitively Adleman’s definition of a virus can be stated as follows:

Definition 4. A program v, that always terminates, is called a virus iff for all
states s either

1. Injure: all programs infected by v behave the same when executed in state s
2. Infect or Imitate: for every program p, the state resulting when p is executed

in s is v-related to the state resulting when v(p) is executed in s

Adleman’s definition of a virus characterizes the relationship between a virus and
a program infected by it. However, there is no quantification or characterization
of injury and infection. Although the notion of injury appears explicitly in his
definition of a virus, Adleman considers the ability to infect to be the core of a
virus (Remark 2 in Adleman [1]). Based on this definition he arrives at a clas-
sification of viruses2 into the four disjoint classes benign, Epeian, disseminating
and malicious.

Intuitively, benign viruses are those which never injure the system nor infect
other programs. Consider a program p, that compresses programs to save disk
space, and adds a decompression routine to its binary so that the program gets
decompressed during execution. p is an example of a benign virus.

Epeian viruses cause damage in certain conditions but never infect other pro-
grams. Boot sector viruses and other programs that delete some key files of the
system are examples of Epeian viruses.

2 For immunological analogies between computer and biological viruses, the reader is
referred to[17].

26 R.K. Shyamasundar, H. Shah, and N.V.N. Kumar

Disseminating viruses spread by infecting other programs but never injure the
system. Internet worms like Netsky, Bagle, Sobig, Sober, MyDoom, Conficker
etc., are examples of disseminating viruses.

Malicious viruses are those programs that cause injury in certain conditions
and propagate themselves by infecting other programs in certain conditions.

3 Techniques for Detecting Viruses

Cohen [9] considers the problem of detecting a computer virus and proves that
it is undecidable in general to detect a virus by its appearance (static analysis).
We now give an intuitive (informal) account of Cohen’s result

Theorem 1. Detecting a virus by its appearance is undecidable.

Proof. Proof is by contradiction.
Let us assume to the contrary that there exists a procedure D that can tell
whether a program is a virus or not. Let there be a program p which infects
other programs if and only if D would have called it benign. Given p as input, if
D calls it benign, then p infects – thus leading to a contradiction. If on the other
hand D calls it a virus then p does not infect, again leading to a contradiction.
All the possibilities lead to contradiction.

Thus, it is not possible to have a procedure such as D.

The above theorem illustrates that if we know what defense mechanism is used
by the defender, we can always build a virus that infiltrates into the system i.e.,
fools the defender. No defense is perfect. Similarly, given a virus, there is always
a defense system that defends against that particular virus.

Adleman considers the problem of detecting whether a program is a virus or
not and proves it undecidable. We present the theorem as in [1].

Theorem 2. For all Godel numberings of the partial recursive functions {φi}
V = {i|φi is a virus} is

∏
2 −complete

What this theorem implies is that it is impossible to always correctly tell whether
a given program is a virus or not. However, it is very important to be able to
detect viruses and nullify them before they carry out the damage.

Having had a glance of the possibilities, let us look at widely used methods
for detecting viruses.

3.1 Signature Based Detection

In signature based detection of viruses, we have a database of known malicious
patterns of instructions. Whenever a file is scanned the detection algorithm com-
pares the sequence of symbols present in the file with the database of known
malicious patterns. If the algorithm finds a match it declares the file to be a
virus.

Malware: From Modelling to Practical Detection 27

Note that signature based detection algorithm critically depends on the
database of known malicious patterns. This database is created by analyzing
known viruses by extracting sequences of instructions present in them and re-
moving any sequences from them that are typical of benign programs. If we
remove very little, we are in danger of not being able to identify even minor
modifications of the virus. If we remove too much, then we are in danger of
marking genuine programs as viruses. Since a lot of discretion is needed to re-
move benign patterns, this process of building the database is very hard to
automate and is typically compiled by human experts. For this reason it takes
reasonable time (even 4 to 5 days) for adding the signature of a newly detected
virus to the database, and by this time the virus would have spread wide and
caused damage.

Thus, signature based detection techniques work well for known viruses but
cannot handle new viruses. This inability limits their effectiveness in controlling
the spreading of new malware. Because of their syntactic nature, these tech-
niques are susceptible to various program obfuscation techniques that preserve
the program behaviour but change the program code in such a way that the
original program and the modified program look very different.

In [6], Chrisodorescu et al., reveal gaping holes in signature-based malware de-
tection techniques employed by several popular, commercial anti-virus softwares.
In their technique, a large number of obfuscated versions of known viruses are
created and tested on several anti-virus softwares. The results demonstrate that
these tools are severely lacking in their ability to detect obfuscated versions of
known malware. An algorithm to generate signatures used by different anti-virus
softwares to detect known malware is also presented. Results show that in many
cases, the whole body of the malware is used as a signature for detection. This
inability to capture malware behaviour comprehensively explains their failure to
detect obfuscated versions of malware.

IBM Internet Security Systems X-Force 2009 Mid-Year Trend and Risk Report
[16] states that the level of obfuscation found in Web exploits and in PDF files
continues to increase while some of these obfuscation techniques are even being
passed to multimedia files. The amount of suspicious obfuscated content has
nearly doubled from Q1 to Q2 of 2009. In the following, we discuss obfuscation
techniques.

Program Obfuscation Techniques
Program obfuscation techniques modify a program in such a way that its be-
haviour remains the same but analysis of the obfuscated program becomes dif-
ficult. The main objective for such transformations is to prevent/make difficult
reverse engineering in order to protect intellectual property or to prevent illegal
program modifications. Several popular techniques for program obfuscation are
code reordering, instruction substitution, variable renaming, garbage insertion
and data and code encapsulation. An exhaustive list of obfuscating transforma-
tions and measures to gauge their efficacy are presented in [11]. Obfuscation
techniques are heavily used by malware programs to evade detection.

28 R.K. Shyamasundar, H. Shah, and N.V.N. Kumar

Substantial research has been done on theoretical aspects of program obfus-
cators. In [2], Barak et al., present impossibility results for program obfuscation
with respect to “virtual black box” intuition which states that anything that can
be computed efficiently from an obfuscated version of program, can be computed
efficiently with just an oracle access to the program. On the positive side, much
of the interesting information about programs is hard to compute. In fact, Rice’s
theorem [29] states that any non-trivial property of partial recursive functions
is undecidable. In [11], Collberg et al., use the result that different versions of
precise static alias analysis are NP-hard [19] or even undecidable [28] to con-
struct opaque predicates – whose values are known to the obfuscator but are
hard to compute by static analysis. In [4], authors present a control-flow obfus-
cation technique that implants an instance of a hard combinatorial problem into
a program.

Polymorphism Generators / Mutation Engines
A better technique to evade detection is adopted by polymorphic and meta-
morphic viruses. Polymorphic viruses exhibit a robust form of self-encryption
wherein the encryption and decryption routines are themselves changed. Thus,
the virus body is the same in all the versions but the encrypted versions appear
different. In metamorphic viruses, the contents of the virus itself are changed
rather than the encryption and decryption routines. In order to achieve this
objective, metamorphic viruses make use of obfuscation techniques like code
reordering, instruction substitution, variable renaming and garbage insertion.

For example, Chameleon, the first polymorphic virus, infects COM files in its
directory. Its’ signature changes every time it infects a new file. This makes it
difficult for anti-virus scanners to detect them. Other polymorphic viruses are
Bootache, CivilWar, Crusher, Dudley, Fly, Freddy, etc.

3.2 Static Analysis of Binaries

Static analysis techniques are used to determine important properties like con-
trol flow safety (i.e., programs jump to and execute valid code), memory safety
(i.e., program only uses allocated memory) and abstraction preservation (i.e.,
programs use abstract data types only as far as their abstractions allow). Type
systems are usually employed to enforce these properties. Although Java Virtual
Machine Language (JVML) also has the ability to type-check low-level code, it
has several drawbacks like semantic errors between the verifier and its’ English
language specification and also the difficulty in compiling high-level languages
other than Java. In [23], authors present a Typed Assembly Language (TAL)
which is a low-level statically-typed target language that supports memory safety
even in the presence of advanced structures and optimizations; TALx86 is tar-
geted at Intel architectures. In [34], authors present a technique to instrument
well-typed programs with security checks and typing annotations so that the re-
sulting programs obey the policies satisfied by security automata [30] and can be
mechanically checked for safety. This technique allows enforcement of virtually
all safety policies since it uses a security automata for policy specification. In

Malware: From Modelling to Practical Detection 29

[24], authors present a technique for protecting privacy and integrity of data by
extending Java language with statically-checked information flow annotations.

An interesting approach to establish safety of un-trusted programs is presented
in [25]. In this approach referred to as Proof Carrying Code, the code producer
provides a proof along with the program. The consumer checks the proof along
with the program to ensure that his safety requirements are met with. Main
objective of PCC was to be able to extend a system with a piece of software that
was certified to obey certain memory safety properties. Though proof generation
is quite complex and is often done by hand, proof verifier is relatively small and
easy to implement. This technique has been applied to ensure safety of network
packet filters that are downloaded into operating system kernel. An application
to ensure resource usage and data abstraction in addition to memory safety for
un-trusted mobile agents was also provided.

An interesting approach to detect variants of a known virus by performing static
analysis on virus code and abstracting out its behaviour is presented in [5]. We now
describe their architecture for detecting variants of a known virus [5]:

1. Generalize the virus code into a virus automata with uninterpreted symbols
to represent data dependencies between variables,

2. Pattern-definitions are internal representations of abstraction patterns used
as alphabet by the virus automata,

3. The executable loader transforms the executable into a collection of control
flow graphs (CFG’s) one for each procedure,

4. Annotator takes a CFG from the executable and the set of abstraction
patterns and produces an annotated CFG as an abstract representation of a
program procedure, and

5. Detector computes whether the virus (represented by the virus automata)
appears in the abstract representation of the executable (represented as a
collection of annotated CFG’s) using tools for language containment and
unification.

Note that for the above algorithm to work, abstraction patterns have to be
provided (manually constructed) for each kind of transformation (code trans-
portation, dead-code insertion etc). Once these are provided the rest of the
algorithm is automatic. Thus, such an architecture works well for recognizing
those variants of known viruses for which abstraction patterns are provided. In
conclusion, this approach works better than signature based matching, but still
has the drawback that it cannot recognize new viruses.

3.3 Semantics Based Detection

In [8], authors formalize the problem of determining whether a program exhibits
a specified malicious behaviour and present an algorithm for handling a limited
set of transformations. Malicious behaviour is described using templates, which
are instruction sequences where variables and symbolic constants are used. They

30 R.K. Shyamasundar, H. Shah, and N.V.N. Kumar

abstract away the names of specific registers and symbolic constants in the spec-
ification of the malicious behaviour, thus becoming insensitive to simple trans-
formations such as register renaming. They formalized the notion of when an
instruction sequence contains a behaviour specified by a template, to match the
intuition that they should have the same effect on the memory upon execution.
A program is said to satisfy a template iff the program contains an instruction
sequence that contains a behaviour specified by the template. The algorithm
to check whether a program satisfies a given template proceeds by finding, for
each template node, a matching node in the program. Once two matching nodes
are found, one needs to check whether the define-use relationships true between
template nodes also hold true in corresponding program nodes. If all the nodes in
the template have matching counterparts under these conditions, the algorithm
is said to have found a program fragment that satisfies the template.

The above approach performs better than the static analysis based approach,
since it incorporates semantics of instructions. Templates is a better form of
abstraction than abstraction patterns. However, note that still templates have
to be constructed by hand by looking at known malicious programs.

In [7] authors present a way of automatically generating malware specifications
by comparing the execution behaviour of a known malware against the execution
behaviours of a set of benign programs. Algorithm [7] for extracting malicious
patterns (malspecs) proceeds as follows

1. Collect execution traces. In this step, traces are collected by passively
monitoring the execution of each program.

2. Construct dependence graphs. In this step, they construct dependence
graphs from the traces to include def-use dependence and value-dependence.

3. Compute contrast subgraph. In this step, they extract the minimal con-
nected subgraphs of the malware dependence graphs which are not isomor-
phic to any subgraph of the benign dependence graph.

For using malspecs for malware detection, they consider the semantics aware
malware detector described above and convert malspecs into templates that can
then be used by the detection algorithm.

4 Protection Mechanisms

In the preceding section, we have studied the problem of detecting viruses. We
have seen theoretical results indicating that the problem is undecidable in gen-
eral. We have also seen some algorithms that can detect particular viruses. In
this section, we will study the possibility of restricting the extent of damage due
to an undetected virus.

Cohen [9] identifies three important properties of usable systems sharing, tran-
sitivity of information flow and generality of interpreting information. Sharing
is necessary if we want others to use the information produced by us. For sharing
information, there must be a well-defined path between the users. Once we have
a copy of the information, it can be used in any way, particularly we can pass it

Malware: From Modelling to Practical Detection 31

on to others. Thus, information flow is transitive. By generality of information,
we mean that information can be treated as data or program.

If there is no sharing, there can be no information flow across boundaries and
hence, viruses cannot spread outside a partition. This is referred to as isola-
tionism. Cohen [9] presents partition models that limit the flow of information.
These models are based on well studied security properties like integrity and con-
fidentiality/secrecy. These properties when enforced in tandem result in parti-
tioning the set of users into closed subsets under transitivity of information flow.
However precise implementations are computationally very hard (NP-complete).
Isolationism is unacceptable in this inter-networked world. Without generality of
interpreting information viruses cannot spread since infection requires altering
the interpreted information. However, for building useful systems we must allow
generality of interpreting information.

Adleman [1] studies the conditions under which a virus can be isolated from
the computing environment. We present an intuitive account of his study.

Definition 5. The infected set of a virus v, denoted Iv is defined as the set of
those programs which result from v infecting some program.

Definition 6. A virus v is said to be absolutely isolable iff Iv is decidable.

If a virus v is absolutely isolable, then we can detect as soon as a program gets
infected by v and we can remove it. Thus, if a virus is absolutely isolable then
we can neutralize it. For example, using this method we can neutralize viruses
which always increase the size of a target program upon infection. Unfortunately,
not all viruses are absolutely isolable as noted in the theorem below [1].

Theorem 3. There exists a program v which always terminates such that

1. v is a malicious virus
2. Iv is semi-decidable

To deal with the viruses of the kind described in the above theorem, Adleman
introduces the notion of germ set of a virus.

Definition 7. The germ set of a virus v, denoted Gv is defined as the set of
those programs which behave (functionally) the same as a program infected by v.

Germs of a virus are functionally the same as infected programs, but are syntac-
tically different. They are not resulted from infections, but they can infect other
programs.

Definition 8. A virus v is said to be isolable within its germ set iff there exists
a set of programs S such that:

1. Iv ⊆ S ⊆ Gv

2. S is decidable

32 R.K. Shyamasundar, H. Shah, and N.V.N. Kumar

If a virus v is isolable within its germ set by a decidable set S, then not allowing
programs in the set S to be written to storage or to be communicated will stop
the virus from infecting. Moreover, isolating some uninfected germs is an added
benefit. Unfortunately, not all viruses are isolable within their germ set.

Adleman [1] suggested the notion of a quarantine as another protection mech-
anism. In this method, one executes a program in a restricted environment and
observe its behaviour under various circumstances. After one gains sufficient
confidence in its genuineness, it can be introduced into the real environment.
Several techniques are developed based on this idea. Application sandboxing
and virtualization are some of the widely studied methods.

Virtualization Techniques and Sandboxing
The most important aspect of malware detection is being able to observe malware
behaviour without being detected by malware. Malware detector typically runs
in the same machine/environment as the malware. Thus, it is susceptible to
subversion by malware. To overcome this limitation, several techniques use a
virtual machine for malware detection. In this scenario, the host OS runs a
Virtual Machine Monitor (VMM) that provides a virtual machine with guest
OS on top of it. Another alternative is to have the VMM run directly on the
hardware instead of the host OS. VMM provides strong isolation and protects the
host from damage. Therefore, malware-detector can be used outside the virtual
machine without the fear of being compromised by malware.

In [20], authors present a technique for detecting malware by running it in
a virtual environment and observing its behavoiur from outside. In order to
reconstruct the semantic view from outside, the guest OS data structures and
functions are cast on VMM state (which is visible to the malware detector).
Using this technique, the authors were able to view volatile state (e.g., list of
running processes) and persistent state (e.g., files in a directory) of the virtual
machine. This allowed them to detect rootkits like FU3, NTRootkit4 and Hacker
Defender5 that hide their own files and processes. As compared to this, the mal-
ware detection program running inside the virtual machine could not detect the
rootkits. Another approach for malware detection via hardware virtualization is
presented in [12]. In this approach, the authors present requirements for trans-
parent malware analysis and present a malware detection mechanism that relies
on hardware virtualization extensions. The advantage of using hardware virtual-
ization extension is that it provides features like higher privilege, use of shadow
page tables and privileged access to sensitive CPU registers. These techniques
offer better transparency.

However, virtual machine techniques are not completely foolproof. Malware
writers employ sophisticated techniques to detect whether the program is run-
ning inside a virtual machine. Whenever a virtual environment is detected, mal-
ware can modify its behaviour and go undetected. In [18] and [27], authors outline
various anomalies that exist in virtualization techniques that can be exploited

3 http://www.rootkit.com/board project fused.php?did=proj12
4 http://www.megasecurity.org/Tools/Nt rootkit all.html
5 http://hxdef.czweb.org

Malware: From Modelling to Practical Detection 33

by malware to detect the presence of a virtual environment. Among the various
anomalies presented are: discrepancies between interfaces of real and virtual
hardware, inaccuracies of execution of some non-virtualized instructions, inac-
curacy due to difficulty in modeling complex chipsets, discrepancies arising out
of shared physical resources between guests and timing discrepancies. Even with
hardware virtualization extensions, several timing anomalies can be easily de-
tected. Thus, VM techniques do not offer complete transparency. In [21] an
application of virtualization to launch a rootkit is presented. This rootkit in-
stalls a virtual machine under the current OS and then hoists the original OS
into this virtual machine. These Virtual Machine Based Rootkits (VMBRs) can
support other malicious programs in a separate OS that is isolated from the
target system. VMBRs are difficult to detect because software running on the
target system cannot access their state.

Sandboxes are security mechanisms to separate running programs by pro-
viding a restricted environment in which certain functions are prohibited (e.g.,
chroot utility in UNIX that allows one to set the root directory for a process). In
this sense, sandboxes can be viewed as a specific example of virtualization (e.g.,
Norman Sandbox6 that analyzes programs in secure, emulated environments).
Sandboxes restrict the effects of a program within a specific boundary. For ex-
ample, CWSandbox7, uses API hooking technique to re-route the system calls
through monitoring code. Thus, all relevant system calls made by un-trusted
programs are monitored at run-time, their behaviour is analyzed and automated
reports are generated. We have developed a similar sandboxing technique for
Linux OS [32] wherein we monitor the system calls made by an un-trusted pro-
gram and restrict its activities at run-time. We provide a guarded command
based policy specification language to encode security policies. This language
is as expressive as a Security Automata [30] and can express complex policies
that depend on temporal aspects of system call trace. Whenever a system call is
intercepted, it is allowed to go through only when it is deemed safe with respect
to the policy at hand.

Sandboxes also suffer from limitations described above for the virtualization
techniques.

5 A New Approach: Validating Behaviours of Programs

In this section, we present a promising future direction [33], for protection from
computer viruses. Our idea is based on validating as opposed to verification in
the context of compilers [3,22]. The validation approach is based on comparing
whether one program is as good or as bad as the other. Such an approach lies on
the notion of bisimulation due to David Park and Robin Milner; these concepts
are very widely used in the context of process algebra and protocol verification.
Recollect that viruses spread by infecting trusted programs. When an infected
program is executed, the program in addition to performing its intended job
6 http://www.norman.com/technology/norman sandbox/
7 http://www.cwsandbox.org/

34 R.K. Shyamasundar, H. Shah, and N.V.N. Kumar

(observable by the user) also results in damage (happens in the background
without the users knowledge/consent). Based on this observation we divide the
behaviour of a program into two parts: external behaviour (behaviour observable
from outside) and internal behaviour (behaviour observable from inside the sys-
tem with the help of a monitor). We further note that if the infection caused by
the virus modifies the external behaviour then the user will suspect and remove
the program. Therefore, it is reasonable to assume that infection modifies only
the internal behaviour of programs. We therefore suggest that we must moni-
tor the internal behaviour of trusted programs and validate them against their
intended behaviour in an environment.

For the class of transactional reactive programs, we can define the external
behaviour as the sequence of interactions that happen between the user and the
program. For example, if we consider a vending machine as our system, one possi-
ble external behaviour is given by place-coin ˆ choose-item ˆ receive-item.
We also observe that during execution of a program p with external behaviour t,
the main process may spawn child processes internally (not necessarily observ-
able to the user) for modularly achieving/computing the final result. Thus, the
total (internal + external) behaviour can be denoted by a tree with processes,
data operations etc denoted as nodes and directed edges. We can now define the
internal behaviour of a program as the process tree generated during execution
together with the associated system calls made by each process (vertex/node)
in the tree. Based on this model of the internal behaviour, we can derive an
algorithm for model-checking whether a program behaviour simulates a given
behaviour. If the observed behaviour of a program simulates its’ intended be-
haviour, then we say that the program is uninfected else we say that it is infected.
We can use this method to detect if and when a trusted program is infected.

We have performed a lot of experiments and obtained encouraging results.
We present some of the experiments and our observations in this section. We
performed our experiments on a machine with Linux (Ubuntu distribution) OS.
We monitored (unobtrusive) the sequence of system calls made (using strace
tool), when the genuine text editor nano is used to edit a file. Note that system
calls act as an interface between the application and the underlying hardware
devices (can be thought of as services). We have also noted the % of time spent
in various system calls, the number of processes created during execution, total
running time, CPU and other resources used during this operation. We have
collected similar information for the genuine ssh program starting from the time
the service is started to the time the user logged in and completed the session.

We executed an infected version of nano program and collected the observ-
able information during its execution. We then compared it with its intended
behaviour and we easily concluded from the observations made that the ver-
sion of nano we executed is infected. Moreover we were also able to identify the
instructions added due to infection to the program.

Summary of differences in the system call profiles of the genuine nano vs the
infected nano:

Malware: From Modelling to Practical Detection 35

1. original program made 18 different system calls whereas the infected version
made 48

2. infected program made network related system calls like socket, connect,
etc. whereas the original program made none

3. infected program spawned 3 processes whereas the original program did not
spawn any process

4. there is a huge difference in the number of read and write system calls
5. we observed a difference in the timing information provided by strace sum-

mary (when both the versions were run only for a few seconds). Original pro-
gram spent around 88% on execve system call and 12% on stat64 whereas
the infected version spent 74.17% on waitpid, 10.98% on write, 6.28% on
read, 4.27% on execve and negligible time on stat64. This indicates that
the infected program spent more time waiting on children than in execution.
This increased percentage of time spent on writing and reading by infected
program indicates malfunction.

We executed an infected ssh program and collected the observable information
during its execution. We then compared it with its intended behaviour and found
that infected program modified the authentication module of the ssh program.
Infected ssh would enable an attacker to successfully login to our host using a
valid username with a magic-pass. In this case the infection has removed certain
instructions from the program.

At a high level we can describe the expected behavior of ssh as follows

1. start sshd service
2. wait for a connection and accept a connection
3. authenticate the user
4. prepare and provide a console with appropriate environment
5. manage user interaction and logout
6. stop sshd

Summary of differences in behavior between genuine ssh and the infected ssh:

1. start sshd service
– Genuine sshd uses the keys and config files from /etc/ssh whereas the

infected ssh obtains these from a local installation directory
2. authenticate the user

– Genuine sshd used kerberos, crypto utilities and pam modules which the
infected ssh does not use

– The infected ssh uses the config and sniff files (local/untrusted resources)
which the genuine sshd does not use

To test the resilience of our approach to the simple syntactic transformations,
that the virus writers are resorting to evade detection, we have compiled the
virus responsible for infection under various levels of optimization. gcc compiler
performs several simple syntactic transformations like loop unrolling, function
inlining, register reassignment etc. We have executed the infected programs nano
(similarly ssh) compiled under different optimization levels and collected the

36 R.K. Shyamasundar, H. Shah, and N.V.N. Kumar

observable information during execution. What we observed was that barring
very minor changes these programs produced the same traces of system calls.
One difference we observed was the way in which contents of a file were buffered
into and out of memory. Optimized program read in chunks of size 4096 whereas
lower level of optimization resulted in reading chunks of a smaller size. These
experiments demonstrate that the various obfuscators would have little impact
on our approach and we will be able to catch infections.

To summarize, we have presented an approach in which we benchmark the
intended behaviours of trusted programs in an execution environment and when-
ever we want to validate whether the installation of the trusted program in a
similar environment is tampered, we collect the observable information during
runtime and compare it with its intended behaviour. If there is a significant dif-
ference between the two, then we say that the program is infected. We have also
showed that the method is resilient to obfuscation. We are conducting experi-
ments to see the effect of polymorphic and metamorphic viruses on our approach.
Note that the method we presented will also be very useful for validating the em-
bedded systems because typically the software and the hardware configurations
of an embedded system are very few.

In our study so far, the above approach seems to be very fruitful for checking
un-tampering of devices of network communication and automobile software [31].
In fact, our study shows that our above approach does not need the constraints
imposed in [31] or their related works on Pioneer and swatt protocols. The work
is under progress and will be reported elsewhere.

6 Discussion

Malware has been a major cause of concern for information security. Today ma-
licious programs are very widely spread and the losses incurred due to malware
is very high (in some cases they result in financial loss while in some other cases
they spoil the reputation of an organization). It is argued in [13] that the fi-
nancial gain from criminal enterprise has lead to large investments of funds in
developing tools and operational capabilities for the attackers on net transac-
tions. Thus, it is imperative to develop mechanisms to defend ourselves from
malware attacks. To develop sound defense mechanisms it then becomes nec-
essary that we understand the fundamental capabilities of virus. In this paper,
we have surveyed various efforts to formalize the notion of a virus/malware and
characterize the damage due to them. We presented theoretical results based on
the formalizations to show that detection of viruses in general is an undecid-
able problem. We presented a variety of detection mechanisms which are widely
deployed to detect viruses in limited cases. We have also established the short-
comings of these detection mechanisms and discussed different techniques which
the virus writers are resorting to evade detection. We then went on to survey
some methods to limit the damages due to unidentified viruses. Unfortunately
these methods end up being too complex to implement or force us towards un-
usable systems (systems with no sharing for example). It may be pointed out
that the malware can be exploited for criminal activities.

Malware: From Modelling to Practical Detection 37

We have also presented a promising new direction for protecting from malware.
Our approach is based on the observation that malware infect trusted programs
to include a subroutine for damage to be carried out in the background without
the users consent. We proposed a framework based on runtime monitoring of
trusted programs and the notion of bisimulation to validate their behaviour.
We presented various experimental results to demonstrate the efficacy of the
approach and showed its resilience to program obfuscation techniques.

Acknowledgement

The authors are grateful to L.M. Adleman, and F Cohen who founded the ex-
cellent theory of computer viruses. One of the authors (Harshit Shah) was sup-
ported under ITPAR II project from DST, Govt. of India.

References

1. Adleman, L.M.: An abstract theory of computer viruses. In: Goldwasser, S. (ed.)
CRYPTO 1988. LNCS, vol. 403, pp. 354–374. Springer, Heidelberg (1990)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Bhattacharjee, A.K., Sen, G., Dhodapkar, S.D., Karunakar, K., Rajan, B.,
Shyamasundar, R.K.: A system for object code validation. In: Joseph, M. (ed.)
FTRTFT 2000. LNCS, vol. 1926, pp. 152–169. Springer, Heidelberg (2000)

4. Chow, S., Gu, Y., Johnson, H., Zakharov, V.A.: An approach to the obfuscation of
control-flow of sequential computer programs. In: Davida, G.I., Frankel, Y. (eds.)
ISC 2001. LNCS, vol. 2200, pp. 144–155. Springer, Heidelberg (2001)

5. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious pat-
terns. In: SSYM 2003: Proceedings of the 12th conference on USENIX Security
Symposium, Berkeley, CA, USA, pp. 12–12. USENIX Association (2003)

6. Christodorescu, M., Jha, S.: Testing malware detectors. In: ISSTA 2004: Proceed-
ings of the 2004 ACM SIGSOFT international symposium on Software testing and
analysis, pp. 34–44. ACM, New York (2004)

7. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behav-
ior. In: Crnkovic, I., Bertolino, A. (eds.) ESEC/SIGSOFT FSE, pp. 5–14. ACM,
New York (2007)

8. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-
aware malware detection. In: IEEE Symposium on Security and Privacy, pp. 32–46.
IEEE Computer Society, Los Alamitos (2005)

9. Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35
(1987)

10. Cohen, F.: Computer Viruses. PhD thesis, University of Southern California (1986)
11. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transfor-

mations. Technical Report 148, Department of Computer Science, University of
Auckland (July 1997),
http://www.cs.auckland.ac.nz/ collberg/Research/Publications/

CollbergThomborsonLow97a/index.html

http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a/index.html
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a/index.html

38 R.K. Shyamasundar, H. Shah, and N.V.N. Kumar

12. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hardware
virtualization extensions. In: CCS 2008: Proceedings of the 15th ACM conference
on Computer and communications security, pp. 51–62. ACM, New York (2008)

13. Dittrich, D.: Malware to crimeware: How far they gone, and how do we catch up?
Login, The USENIX Magazine 34(4), 35–44 (2009)

14. Filiol, E.: Computer Viruses from Theory to Applications. IRIS International Se-
ries. Springer, France (2005)

15. IBM X Force Threat Reports. IBM Internet Security Systems X-Force, trend and
risk report (2008),
http://www-935.ibm.com/services/us/iss/xforce/trendreports/

16. IBM X Force Threat Reports. IBM Internet Security Systems X-Force, mid-year
trend and risk report (2009),
http://www-935.ibm.com/services/us/iss/xforce/trendreports/

17. Forrest, S., Hofmeyr, S.A., Somayaji, A.: Computer immunology. CACM 40(10),
88–96 (1997)

18. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is not trans-
parency: Vmm detection myths and realities. In: HOTOS 2007: Proceedings of the
11th USENIX workshop on Hot topics in operating systems, Berkeley, CA, USA,
pp. 1–6. USENIX Association (2007)

19. Horwitz, S.: Precise flow-insensitive may-alias analysis is np-hard. ACM Trans.
Program. Lang. Syst. 19(1), 1–6 (1997)

20. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based “out-
of-the-box” semantic view reconstruction. In: CCS 2007: Proceedings of the 14th
ACM conference on Computer and communications security, pp. 128–138. ACM,
New York (2007)

21. King, S.T., Chen, P.M., Wang, Y.-M., Verbowski, C., Wang, H.J., Lorch, J.R.:
Subvirt: Implementing malware with virtual machines. In: SP 2006: Proceedings
of the 2006 IEEE Symposium on Security and Privacy, Washington, DC, USA, pp.
314–327. IEEE Computer Society, Los Alamitos (2006)

22. Kundaji, R., Shyamasundar, R.: Refinement calculus: A basis for translation val-
idation, debugging and certification. Theoretical Computer Science 354, 156–168
(2006)

23. Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker,
D., Weirich, S., Zdancewic, S.: Talx86: A realistic typed assembly language. In:
Second Workshop on Compiler Support for System Software, pp. 25–35 (1999)

24. Myers, A.C.: Jflow: practical mostly-static information flow control. In: POPL
1999: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 228–241. ACM, New York (1999)

25. Necula, G.C.: Proof-carrying code. In: POPL 1997: Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 106–
119. ACM, New York (1997)

26. Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois
Press, Champaign (1966)

27. Raffetseder, T., Krügel, C., Kirda, E.: Detecting system emulators. In: Garay, J.A.,
Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 1–18.
Springer, Heidelberg (2007)

28. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang.
Syst. 16(5), 1467–1471 (1994)

29. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74(2), 358–366 (1953)

 http://www-935.ibm.com/services/us/iss/xforce/trendreports/
 http://www-935.ibm.com/services/us/iss/xforce/trendreports/

Malware: From Modelling to Practical Detection 39

30. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

31. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: Externally verifiable
code execution. CACM 49(9), 45–49 (2006)

32. Shah, H.J., Shyamasundar, R.K.: On run-time enforcement of policies. In:
Cervesato, I. (ed.) ASIAN 2007. LNCS, vol. 4846, pp. 268–281. Springer,
Heidelberg (2007)

33. Shyamasundar, R., Shah, H., Kumar, N.N.: Checking malware behaviour via quar-
antining (abstract). In: Int. Conf. on Information Security and Digital Foren-
sics, vol. City University of London, Full manuscript under submission process
(September 2009)

34. Walker, D.: A type system for expressive security policies. In: POPL 2000: Pro-
ceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pp. 254–267. ACM, New York (2000)

35. www.computereconomics.com 2007 malware report: The economic impact of
viruses, spyware, adware, botnets, and other malicious code,
http://www.computereconomics.com/page.cfm?name=Malware%20Report

www.computereconomics.com
http://www.computereconomics.com/page.cfm?name=Malware%20Report

	Malware: From Modelling to Practical Detection
	Introduction
	Formal Approaches to Virus Characterization
	Techniques for Detecting Viruses
	Signature Based Detection
	Static Analysis of Binaries
	Semantics Based Detection

	Protection Mechanisms
	A New Approach: Validating Behaviours of Programs
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

