
A Skeletal Parallel Framework with

Fusion Optimizer for GPGPU Programming

Shigeyuki Sato and Hideya Iwasaki

Department of Computer Science
The University of Electro-Communications

sato@ipl.cs.uec.ac.jp, iwasaki@cs.uec.ac.jp

Abstract. Although today’s graphics processing units (GPUs) have
high performance and general-purpose computing on GPUs (GPGPU)
is actively studied, developing GPGPU applications remains difficult for
two reasons. First, both parallelization and optimization of GPGPU ap-
plications is necessary to achieve high performance. Second, the suitabil-
ity of the target application for GPGPU must be determined, because
whether an application performs well with GPGPU heavily depends on
its inherent properties, which are not obvious from the source code. To
overcome these difficulties, we developed a skeletal parallel programming
framework for rapid GPGPU application developments. It enables pro-
grammers to easily write GPGPU applications and rapidly test them
because it generates programs for both GPUs and CPUs from the same
source code. It also provides an optimization mechanism based on fusion
transformation. Its effectiveness was confirmed experimentally.

1 Introduction

It is more difficult to develop efficient parallel programs, because they are more
complex than sequential ones due to interactions between processes. One ap-
proach to making parallel programming easier is skeletal parallel programming
[1], in which parallel programs are built using skeletons, i.e., frequently used par-
allel computation patterns. Skeletons provide high-level abstraction and enable
programmers to write parallel programs in a sequential manner.

Skeletal parallel programming has been studied from both theoretical and
practical aspects. In the theoretical area, optimization based on fusion [2,3,4]
has been studied [5,6,7]. In the practical area, skeleton libraries for distributed
memory systems such as PC clusters have been developed [8,9,10,11]. However,
not many practical applications rely on skeletal parallelism, which is a serious
problem for skeletal parallel programming. To expand the area of its application,
we applied skeletal parallelism to the programming for graphics processing units
(GPUs).

The arithmetic performance and memory bandwidth of today’s GPUs is ten
times higher than that of today’s CPUs, and the performance of GPUs is improv-
ing more rapidly than that of CPUs. This is why general-purpose computing on

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 79–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

80 S. Sato and H. Iwasaki

GPUs (GPGPU) [12,13] is being actively studied in the field of high-performance
computing and why many GPGPU applications have been developed.

Development of a GPGPU application is difficult and troublesome for two
reasons. First, only parallel programs that are well optimized for GPU architec-
tures can fully utilize the performance of GPUs. The performance of a GPGPU
program that does not sufficiently exploit a GPU’s capabilities is often worse
than that of a simple sequential one running on a CPU. Second, programmers
need to determine whether the target application is suitable for GPGPU. For
example, an application may not be able to achieve the good performance due
to data transfer from main memory to video memory and GPU start-up time.

As an approach to these difficulties of GPGPU programming, we propose
applying high-level abstraction of skeletons to hide the use of GPUs. We have
developed a skeletal parallel programming framework with a fusion optimizer
that enables programmers to easily write GPGPU applications and test them
rapidly. The proposed framework is designed so as to be embedded in the C
language, i.e., programmers can use the framework without any language exten-
sions to C. In addition, programmers can write efficient parallel programs for
both GPUs and CPUs as the same source code. Thus, the suitability for GPGPU
can be tested rapidly. Our main contributions can be summarized as follows.

– We show that skeletal parallel programming can be applied to a practical
framework for rapid GPGPU application development. We also illustrate
its effectiveness through specific examples. The proposed framework is a
practical application of skeletal parallel programming.

– We present that the proposed framework enables programmers to rapidly
check the suitability of target applications for GPGPU. From the same source
code, the framework generates three kinds of programs, namely a GPGPU
program, a portable C++ parallel program with OpenMP, and a portable
sequential C program.

– We present an implementation of the optimizer based on fusion transfor-
mation of skeletons and show its effectiveness for GPGPU applications. In
the best case, an optimized GPGPU program ran 2.44 times faster than the
non-optimized version.

2 Preliminaries

2.1 BMF and Skeletal Parallelism

In this paper, we regard data parallel primitives in the Bird-Meertens Formalism
(BMF) [14] as skeletons for BMF-based skeletal parallel programming [15,16].
Throughout this paper, we use the notation of Haskell for describing the speci-
fications of skeletons and other primitive operations.

Three important skeletons in BMF are map, reduce and zipwith.

map f [x1, x2, . . . , xn] = [f x1, f x2, . . . , f xn]
reduce (⊕) [x1, x2, . . . , xn] = x1 ⊕ x2 ⊕ · · · ⊕ xn

zipwith f [x1, x2, . . . , xn] [y1, y2, . . . , yn] = [f x1 y1, f x2 y2, . . . , f xn yn],

A Skeletal Parallel Framework with Fusion Optimizer 81

Fig. 1. CUDA hardware model

where ⊕ is an associative operator. We suppose that map, reduce, and zipwith
are not given either empty or infinite lists.

We can transform a program into an efficient one by merging successive skele-
tons into a single one, e.g., map f (map g as) = map (f ◦ g) as. Such program
transformation is called fusion, which is well-known in functional programming.

2.2 CUDA

CUDA is a general-purpose parallel computing architecture for GPUs. We briefly
describe CUDA’s features. Refer to the programming guide [17] for more details.

CUDA’s hardware model is a distributed memory system that consists of
host and device memory. These two kinds of memory are physically separated,
as illustrated in Fig. 1. Host memory corresponds to main memory, while device
memory corresponds to video memory. A GPU has several streaming processors
(SMs), each of which consists of several scalar processor (SP) cores. Each SM
supports multithreading.

Programmers use “C for CUDA”1, an extended C language, to write GPGPU
programs. Strictly speaking, CUDA is a subset of C++ with language extensions
for using the device. These extensions include three additional function type
qualifiers: __global__, __device__, and __host__. The __global__ qualifier
declares a function that is called from the host and executed in the device, the
__device__ qualifier declares one that is called from the device and executed
in the device, and the __host__ qualifier declares one that is called from the
host and executed in the host. A function without one of these qualifiers is
regarded to be qualified by __host__. A function qualified by both __device__
and __host__ is compiled for both the device and the host. __global__ and
__device__ functions have several restrictions; e.g., they do not support the
recursive call, the return type of each __global__ function must be void, and
a function pointer to a __device__ function cannot be taken.

1 In the rest of this paper, “C for CUDA” is simply called CUDA.

82 S. Sato and H. Iwasaki

1 #include <skeleton.h>
2
3 double sqr(int x) { return (double) x*x; }
4 double add(double x, double y) { return x+y; }
5
6 double sqr_sum(int *buf , int n)
7 {
8 int *as[PTR_UNIT]; // declare wrapped array pointer
9 double *tmp[PTR_UNIT]; // declare wrapped array pointer

10 double res;
11
12 skel_new (as); // initialize as
13 skel_new (tmp); // initialize tmp
14 skel_wrap (as, buf , n); // wrap array pointed to by buf
15
16 map(sqr , as, tmp); // square each element of as
17 reduce(add , tmp , &res); // sum up all elements of tmp
18
19 skel_del (as); // dispose of wrapped array
20 skel_del (tmp); // dispose of wrapped array
21
22 return res;
23 }

Fig. 2. Program that computes square sum of integer list using framework

Because CUDA had made GPGPU easier than before, CUDA became most
popular in GPGPU programming. Nevertheless, GPGPU programming with
CUDA remains difficult. For instance, when a matrix multiplication program
that is simply and sequentially coded for a CPU is ported to CUDA for a GPU
without much modification, the ported program is 200–2000 times slower than
the original one as shown in an experiment2. This suggests that GPGPU pro-
gramming with CUDA needs very hardware-conscious programming.

3 Overview of Proposed Framework

We briefly describe how to write a program using the proposed framework.
Figure 2 shows an example program that computes a square sum of a list that
is represented by an array using the framework.

First, the header file is included (line 1) to enable use of the framework APIs.
Wrapped array pointers, which will be described in Sect. 4.1, are declared (lines
8–9) and initialized by skel_new (lines 12–13). Then, an array is wrapped by
skel_wrap (line 14), whose third parameter is the number of wrapped elements
in the array. Then, the skeletons operate on the lists (lines 16–17), where the
last parameter given to each skeleton is the destination for storing the result.

2 Refer to Sect. 7 for details on the experimental environment.

A Skeletal Parallel Framework with Fusion Optimizer 83

Fig. 3. Outline of proposed framework

Finally, skel_del disposes of the wrapped array that is no longer necessary (lines
19–20). With this framework, programmers can easily write GPGPU programs
without any consideration of either hardware or parallelization.

The framework transforms a given program in which APIs of the framework
are used. As shown in Fig. 3, it has three main components:

– a source-to-source compiler with a fusion optimizer for parallel programs,
– runtime libraries, and
– a macro-only API implementation for sequential programs.

The source-to-source compiler, which is the core of the framework, generates
C code with skeletons into CUDA code for GPUs or C++ code with OpenMP
for CPUs. Compiler driver scripts run a CUDA compiler or a C++ compiler
with appropriate compile-time constants, and the generated code is compiled
into executable code. The runtime libraries are used by the generated code. The
macro-only API implementation is used for debugging and porting.

4 Design

4.1 Principles

C for Base Language. The framework was designed on the basis of the C
language. Each API of the framework can be seen as a macro from the viewpoint
of C programming, even though each API call and other parts of a program
are transformed by our compiler for GPGPU. The framework also provides the
macro-only implementation of each API to help users debug programs as on-
CPU sequential C programs. Skeletons require no language extension to C. This
is one of the great merits of our framework and skeletal parallel programming.

There are three reasons for selecting C as the base language. The first is
CUDA’s affinity for C: it is easy to translate C into CUDA because CUDA
is an extended C language. The second and third reasons are the popularity
and performance of C. In fact, many skeleton libraries [8,9,10,11,18] have been
implemented in C/C++ for these two reasons.

84 S. Sato and H. Iwasaki

Transparency. The framework is designed to have transparency, i.e., to hide
the use of the GPU and distributed memory. This enables the framework to gen-
erate three kinds of programs: GPGPU programs, on-CPU parallel programs,
and on-CPU sequential programs. Thus, transparency leads to portability. The
transparency and portability of the framework owe much to the high-level ab-
straction of skeletons, an important advantage of skeletal parallel programming.

Pointer Contracts. The proposed framework imposes three contracts, i.e.,
promises that should be kept.

– A list passed to skeletons should be a wrapped array.
– Wrapped arrays should be accessed via only APIs of the framework.
– Every wrapped array pointer should have no alias.

If a skeleton received pointers into which the result of a computation was stored,
memory copying between device and host would occur every time that skeleton
was called. This would seriously degrade performance. This problem is caused
by pointers that can freely access memory. To solve this problem, we introduce
wrapped arrays to which access is restricted and wrapped array pointers that
point to the head of a wrapped array, in contrast to the raw pointers and raw
arrays natively supported in C.

Neither dereferencing nor pointer arithmetic against wrapped array pointers
are permitted. They are only permitted to be passed to APIs. In addition, when
part of a raw array is wrapped, the programmer must ensure that the area is
not referred to by other pointers.

Because aliases make fusion optimization difficult, the framework forbids op-
erations that may produce aliases of wrapped array pointers, e.g., assignment,
indirect reference, passing to functions, and returning from functions.

4.2 APIs

The framework provides simple and natural APIs for C programmers. Table 1
shows the APIs with brief descriptions. Each skeleton is a procedure (a function
with no return value) whose last parameter is the destination into which the
result will be stored. The mapls and maprs APIs are introduced because C does
not support partial application. The generate API is introduced because of its
efficient construction of lists and synergy with fusion.

The APIs do not depend on list element types and have as polymorphic be-
haviors as macros.

Functions passed to skeletons are defined in C without special function type
qualifiers even though skeletons are executed on GPUs. This enables program-
mers to transparently reuse functions.

No operations that change the length of a list are provided. Thus, the length
of the resulting list of a skeleton call is automatically determined once the list
length is set by skel wrap or generate. Programmers need not be concerned
about the list length because the framework appropriately propagates the length
in the implementation of skeletons.

A Skeletal Parallel Framework with Fusion Optimizer 85

Table 1. API list (function identifier, wrapped array pointer, raw pointer, wrapped
array, and raw array are abbreviated as FI, WAP, RP, WA, and RA, respectively)

API Brief description

map(FI f, WAP as, WAP bs) map
reduce(FI op, WAP as, RP a) reduce
zipwith(FI f, WAP as, WAP bs, WAP cs) zipwith
mapls(FI f, RP∪WAP a, WAP bs, WAP cs) map (λx.f a x) bs
maprs(FI f, RP∪WAP a, WAP bs, WAP cs) map (λx.f x a) bs
generate(FI f, int n, WAP as) map f [0, . . . , n − 1]
skel new(WAP as) initializing WAP
skel del(WAP as) disposing of WA
skel wrap(WAP dst, RP src, int n) wrapping RA
skel unwrap(WAP as) unwrapping WA
skel dup contents(RP dst, WAP src) copying WA to RA
skel get element(RP dst, WAP src, int i) getter for WA
skel set element(WAP dst, int i, RP src) setter for WA

The APIs do not include memory allocation operations. Instead, runtime li-
braries automatically allocate memory when a skeleton first accesses a wrapped
array pointer. Hence, skel_del does nothing unless memory has been allocated.

For implementation reasons, the APIs have the following restrictions.

– A list element type must not include the pointer type.
– Each API call must be an expression statement.
– A function argument passed to a skeleton must be the function identifier.
– Functions passed to skeletons have the same restrictions as __device__ func-

tions in CUDA.
– Binary operators passed to reduce must be associative and commutative.

The first restriction comes from the fact that the framework does not support
serialization. The second restriction is needed for the macro-only API implemen-
tation. For instance, a skeleton call in an expression causes a syntax error if the
skeleton is implemented as a macro of a for loop. The third restriction helps both
CUDA and C++ compilers to inline functions passed to skeletons. A function
passed to a skeleton can be inlined only if it can be statically determined. The
fourth restriction is needed because functions passed to skeletons are executed
on GPUs. The last restriction is necessary to achieve efficient implementations
of skeletons on GPUs. If commutative and associative operators are given, the
reduction algorithm can be optimized for GPUs by using the Harris algorithm
[19]. This restriction is not particularly severe because frequently used operators
have commutativity.

5 Fusion Transformation

Two functions, which are not explicitly used by programmers, are used for in-
termediate representation of skeletons. They are introduced to implement the
fusion transformation in a uniform way.

86 S. Sato and H. Iwasaki

zipwithk f [x1
1, . . . , x

1
n] · · · [xk

1 , . . . , xk
n] = [f x1

1 · · · xk
1 , . . . , f x1

n · · · xk
n]

reducek (⊕) f [x1
1, . . . , x

1
n] · · · [xk

1 , . . . , xk
n] = (f x1

1 · · · xk
1) ⊕ · · · ⊕ (f x1

n · · · xk
n)

zipwithk returns a list zipping corresponding elements of given lists with a func-
tion f . reducek returns a value of folding with ⊕ the result of zipping correspond-
ing elements of given lists with f . The following three equations hold.

map = zipwith1 zipwith = zipwith2 reduce (⊕) = reduce1 (⊕) id,

where id is the identity function.
The fusion rules for map, reduce, and zipwith are as follows.

map f (zipwithk g as1 · · · ask) −→ zipwithk (f ◦ g) as1 · · · ask

reduce (⊕) (zipwithk f as1 · · · ask) −→ reducek (⊕) f as1 · · · ask

zipwith f (zipwithi g as1 · · · asi) (zipwithj h bs1 · · · bsj)

−→ zipwithi+j φ as1 · · · asi bs1 · · · bsj

where φ x1 · · · xi y1 · · · yj = f (g x1 · · · xi) (h y1 · · · yj)

Using these rules and the definitions of skeletons, we can express skeleton fusion
results in terms of only zipwithk and reducek. Therefore, implementations of
zipwithk and reducek should suffice for the framework.

From the perspective of efficiency, we implemented zipwithk and reducek in
imperative algorithms using loops for arrays.

stepk i f [x1
1, . . . , x

1
n] · · · [xk

1 , . . . , xk
n] = f x1

i · · · xk
i

stepk i as1 · · · ask (i = 1, . . . , n) is used at each iteration step that computes the
i-th element of the result of zipwithk as1 · · · ask. Therefore, parallelization of
zipwithk can be implemented with loop splitting, and parallelization of reducek

can be implemented with loop splitting and tree reduction.
The second parameter function of stepk, f , is composed of the functions passed

to skeletons. Hence, the function can be constructed in a bottom-up manner from
a tree structure of skeleton calls (a skeleton tree). Construction of [0, . . . , n − 1]
in generate can be avoided by using the value of the first parameter of stepk.
Thus, if skeleton trees have been constructed, fusion is straightforward.

6 Implementation

6.1 Compiler

The source-to-source compiler was implemented using the COINS3 compiler in-
frastructure. The cfront component of COINS translates C source code into
high-level intermediate representation (HIR), which is a kind of abstract syn-
tax tree, and the hir2c component translates HIR into C source code. Program
transformation for skeletons was mainly implemented at the HIR level.

There are four steps in the compilation process.
3 http://coins-project.is.titech.ac.jp/international/

http://coins-project.is.titech.ac.jp/international/

A Skeletal Parallel Framework with Fusion Optimizer 87

1. The C source code with skeletons is translated into HIR by cfront.
2. The fusion optimizer constructs skeleton trees from the HIR and then per-

forms HIR-to-HIR transformation.
3. The transformed HIR is translated into C code by hir2c. Then, __device__,

__host__, and inline are appended to the prototype declarations of all
functions passed to skeletons for CUDA code generation. For C++ code,
inline are appended.

4. Code is generated from each skeleton tree and merged into the code generated
in Step 3. Then, runtime libraries are included.

In the generated CUDA code, implementation of specific skeletons consists of
two function templates, i.e., an entry function template and a __global__ func-
tion template. First, the entry function template is called from a point of a
skeleton call. In the entry function template, array length check, memory al-
location, memory copy, and some preparations for CUDA are performed. In
addition, depending on the array length, the execution of the skeleton body is
switched to either GPUs or CPUs. Second, if the body is determined to be exe-
cuted on GPUs, the __global__ function template for the skeleton body, which
includes parallel loops with some optimization techniques on CUDA, is called.
The generated C++ code with OpenMP is similar, except that it does not use
a __global__ function template. These function templates are strongly typed.
If compilation by our compiler and compilation of the generated code succeed,
the use of skeletons is type-safe. Such generative approach reduces overhead and
overcomes restrictions of __device__ functions.

6.2 Fusion Optimizer

The fusion optimizer

1. finds safely fusible skeleton calls, whose fusion preserves the semantics of the
program,

2. constructs a skeleton tree from each sequence of those calls, and
3. rewrites the HIR by using the result of the fusion.

Steps 1 and 2 are done by fusion analyzer, which is part of the fusion optimizer.
The algorithm of the fusion optimizer is based on a greedy fusion strategy,

which fuses as many skeleton calls as possible regardless of recomputation. In
fact, recomputation is not bad or sometimes good even though it seems to waste
resources. In particular, recomputation is good for GPUs because arithmetic
operations are much faster than memory accesses on GPUs. For instance, a re-
computation of generate often performs better than a store/load of the results
because it avoids construction of lists and memory accesses. Moreover, reducing
skeleton calls is good for GPUs because GPUs take more time to start up. There-
fore, we decided to recompute skeletons rather than to store/load the results in
the fusion optimization process.

In addition to the above properties of GPUs, the greedy fusion strategy is used
because light-weight functions rather than heavy-weight ones are often passed to

88 S. Sato and H. Iwasaki

1 {
2 map(f, as, bs);
3 map(g, bs, ds);
4 zipwith(op, cs, ds , es);
5 map(h, bs, bs);
6 reduce(oq, es, &r);
7 skel_del (es);
8 }

(a) Before fusion

{

ds = zipwith1 (g ◦ f) as

bs = zipwith1 (h ◦ f) as
r = reduce2 oq op cs ds
skel_del(es);

}

(b) After fusion (psuedo)

Fig. 4. Example of fusion optimization

skeletons and a skeleton call given a heavy-weight function is rarely fused with
many other skeleton calls.

A target of the fusion analyzer is a basic block, which is a series of statements
that does not include jumps or labels but can include function calls. The fusion
optimizer performs a local optimization. Hence, the analysis is performed within
each basic block.

In a basic block, the fusion analyzer (1) finds a skeleton call, s, (2) constructs
Us, where Us is a set of all successive skeleton calls that use the result of s, and
(3) checks whether the result of s is not used except for members of Us. Then,
(4) if the validation in (3) succeeds, a set of skeleton calls that are safely fusible
with s is Us; otherwise ∅. Finally, (5) s is fused4 with every member of Us. The
fusion process proceeds to the next skeleton call of s.

Figure 4 shows an example of fusion optimization. When map (line 2) is s,
Us = {map (line 3), map (line 5)}. Because the result of map (line 2) is overwritten
in line 5, i.e., that is not used any more, map (line 2) is fused with both map
(line 3) and map (line 5). In this case, mapping f to as is computed twice on
the basis of the greedy fusion strategy. Similarly, when map (line 3) is s, Us =
{zipwith (line 4)}. However, map (line 3) cannot be fused with zipwith (line 4)
because the result of map (line 3), i.e., ds, is not deleted.

6.3 API Implementation

The wrapped array pointer was implemented by using a fixed-length array of
pointers, each of which is of a pointer type to the list element type. The pointer
array consists of a pointer to host memory, a pointer to device memory, and the
length of the list in the case of CUDA code. The wrapped array pointer type
behaves like a struct type that has parametric polymorphism. Although this
solution seems to be ad hoc, both language extension to C and the use of void
pointers were avoided.

A device pointer is extracted from each wrapped array pointer passed to
skeletons within the implementation of each skeleton. Then, the array in the

4 More precisely, the fusion analyzer only constructs skeleton trees.

A Skeletal Parallel Framework with Fusion Optimizer 89

device is directly accessed in the execution of the skeleton body. Therefore, the
overhead of wrapped array pointers is small.

The polymorphism of the APIs was implemented with the void pointer type
for the compiler. First, the prototype declarations of the APIs were defined using
the void pointer type in the header file. Then, the API calls are rewritten to calls
of function templates that implement the APIs by the compiler. After that, the
void pointer type of the APIs is not used. These function templates have strongly
typed polymorphism.

7 Experimental Results

It is difficult to determine the properties of a GPGPU application simply by
analyzing the algorithms or reading the source code. Thus, it is of great use to
generate programs for GPUs and CPUs from the same source code to compare
their performance. To demonstrate the effectiveness of the proposed framework
from this viewpoint, we tested four applications5.

N-Body (NB): This is an N-body simulation using the Euler method in two-
dimensional space. Two lists (positions and velocities of bodies) are updated
every step. An element in each list is a pair of double numbers. Its time
complexity is O(tn2), where n is the number of bodies and t is the number
of steps.

Numerical Integration (NI): This computes
∫ b

a x log x cos xdx in 2n divi-
sions (x is double) by using Simpson’s rule. Its time complexity is O(n).

Matrix Multiplication (MM): This computes AB, where A is an m×n ma-
trix and B is an n × m matrix whose elements are double. A and B are
represented as row and column vectors respectively. AB is computed with
inner products of row and column vectors. Its time complexity is O(m2n).

Correlation Coefficient (CC): This computes the Pearson product-moment
correlation coefficient from two sequences of samples whose lengths are n.
Each sequence is represented as a list of double. Its time complexity is O(n).

The experiments were performed on a PC with an Intel Core 2 Duo E8500 CPU
(3.16 GHz, L2 cache 6 MB) and a NVIDIA GeForce GTX 280 GPU (via PCI-
Express 2.0). The main memory was DDR2-800 4 GB. The video memory of the
GPU was 1 GB. The operating system was Ubuntu 7.10 (32-bit). We used CUDA
SDK 2.0 (driver version 177.67) and GNU C++ 4.2.1 (including OpenMP) for
compiling on-CPU programs. Each binary was created in -O3 optimization level.

For each application, we used four programs.

skel-GPU-gen: An on-GPU skeleton program whose input data is generated
on the GPU with generate.

skel-GPU-trans: An on-GPU skeleton program whose input data is generated
sequentially on the CPU and transferred to device memory.

skel-CPU-par: An on-CPU skeleton program with OpenMP. It can be gener-
ated from the same source code used for skel-GPU-gen by our framework.

5 Refer to Table 2 for the number of skeleton calls used in each application.

90 S. Sato and H. Iwasaki

 0

 5000

 10000

 15000

 20000

 25000

 30000

 8000 12000 16000 20000 24000

ex
ec

ut
io

n
tim

e
(m

s)

n

skel-GPU-gen
skel-GPU-trans

skel-CPU-par
hand-CPU-seq

(a) NB, t = 4

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 6e+06 1.2e+07 1.8e+07 2.4e+07 3e+07 3.6e+07

ex
ec

ut
io

n
tim

e
(m

s)

n

skel-GPU-gen
skel-GPU-trans

skel-CPU-par
hand-CPU-seq

(b) NI, a = 1, b = 1000

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 50000 100000 150000 200000 250000

ex
ec

ut
io

n
tim

e
(m

s)

n

skel-GPU-gen
skel-GPU-trans

skel-CPU-par
hand-CPU-seq

(c) MM, m = 128

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 3e+06 6e+06 9e+06 1.2e+07 1.5e+07 1.8e+07

ex
ec

ut
io

n
tim

e
(m

s)

n

skel-GPU-gen
skel-GPU-trans

skel-CPU-par
hand-CPU-seq

(d) CC

Fig. 5. Execution time of four applications against input data size for skel-GPU-gen,
skel-GPU-trans, skel-CPU-par, and hand-CPU-seq

hand-CPU-seq: A simple hand-coded sequential program in C++ that per-
forms the same computation as skel-CPU-par after fusion optimization in a
sequential manner on the CPU without using our framework.

Fusion optimization was applied to all skeleton programs. Because the macro-
only API implementation does not support fusion optimization, we did not use
the sequential on-CPU program of each skeleton program generated by the pro-
posed framework. Instead, we used hand-CPU-seq in the experiments.

As shown in Fig. 5, NB and NI had the same tendency: skel-GPU-gen and
skel-GPU-trans showed almost the same results and were always better than
skel-CPU-par and hand-CPU-seq. From these results, we can see that NB and
NI are suitable for GPGPU. For MM, skel-GPU-gen and skel-GPU-trans were
better than skel-CPU-par and hand-CPU-seq when the amount of input data
was large. This means that the suitability of MM for GPGPU depends on the
amount of input data. For CC, skel-GPU-trans was always worse than skel-CPU-
par: CC is not suitable for GPGPU due to the transfer of input data.

For all applications, skel-GPU-gen had the best performance except for MM
on small input data. This shows that the framework is able to exploit the po-
tential of the GPU. Depending on the application and amount of input data,

A Skeletal Parallel Framework with Fusion Optimizer 91

Table 2. Effects of fusion optimization on skel-GPU-gen. Number of skeleton calls was
statically counted in source code, not counted at runtime

Application NB NI MM CC

Number of skeleton calls (before/after) 5/4 10/2 4/3 12/7
Maximum speed up (times) 1.00 1.48 1.71 2.44

Table 3. Overhead of skel-GPU-gen compared to hand-GPU-gen on large input data

Application NB NI MM CC

skel-GPU-gen (%) 27.3 s (100.00) 3.84 s (100.25) 994 ms (108.86) 25.3 ms (116.93)
hand-GPU-gen (%) 27.3 s (100.00) 3.83 s (100.00) 913 ms (100.00) 21.7 ms (100.00)

skel-GPU-trans may be slower than skel-CPU-par. This is due to the inher-
ent properties of the application. It is quite difficult to determine the inherent
properties of an application without running the programs. An important and
distinguishing point of the proposed framework is that programmers can easily
identify such properties by generating programs for both GPUs and CPUs from
the same source code and comparing their performance.

Table 2 shows the effects of fusion optimization on skel-GPU-gen under the
same condition as the benchmarks in Fig. 5. For each application, the maximum
speed up was achieved at largest input data and the minimum was caused at
nearly least input data. Overall, the fusion optimization had good effects on the
performance in GPGPU.

Table 3 shows the overhead of skel-GPU-gen compared to hand-GPU-gen: a
hand-coded parallel program in CUDA whose input data was generated on the
GPU. The hand-GPU-gen programs of NB, NI, and CC were optimized so as to
reuse functionspassed to skeletons.Thehand-GPU-genprogramofMMwasmainly
implemented using the DGEMM subroutine of the CUBLAS library, which is an
implementation of basic linear algebra subprograms on CUDA. The overhead was
examined when the amount of input data was larger than or equal to the maximum
in the benchmarks in Fig. 5. For NB and NI, which are suitable for GPGPU, there
was very little overhead. For MM, although CUBLAS is a well optimized library,
therewas a little overhead.ForCC,becausehand-GPU-genavoided recomputation
efficiently and elaborately, there was the largest overhead of the four applications.

8 Related Work and Discussion

8.1 Skeletal Parallel Programming

Many skeletal parallel programming environments provide skeletons as libraries.
Muesli [8], eSkel [9], Quaff [10], and SkeTo [11] are libraries implemented in
C/C++ with MPI for distributed memory systems such as PC clusters. BlockLib

92 S. Sato and H. Iwasaki

[18] is a library implemented in C equipped with C preprocessor macros for the
Cell Broadband Engine processor. Our framework differs from these approaches
in that the target is GPGPU.

Some implementations have optimization mechanisms for skeleton calls. The
FAN skeleton framework [20] supports automatic rule-based program transfor-
mation; however, the transformation is ad hoc and requires many rules. Grelck
and Scholz [21] presented three optimizers that merge with-loops, which are
used for array skeletons, in a SaC [22] compiler. Their optimizer was focused
on multi-dimensional different-bounds arrays. SkeTo supports an optimizer [23]
that partially implements Hu et al.’s fusion [5,6] for BMF-based list skeletons.
The SkeTo optimizer does not support zipwith fusion at all, which ours supports.

8.2 GPGPU Programming

Stream programming [24] has been proposed for efficiently exploiting stream
processors. Brook for GPUs [25] supports stream programming for GPUs.

MapReduce [26,27] is a programming model that efficiently exploits large-
scale PC clusters in the back-end of search engines. MapReduce systems for
GPUs have been developed; Mars [28] is optimized for CUDA, and Merge [29]
dispatches tasks to both GPUs and CPUs.

Stream programming is similar to BMF-based skeletal programming from the
viewpoint that both compose operations of a specific data structure. However, in
stream programming, the data structure is restricted to streams, while BMF can
be extended to various data structures. MapReduce resembles BMF-based skele-
tal programming because both use higher-order functions. However, MapReduce
does not treat the composition of higher-order functions. Therefore, BMF-based
skeletal parallel programming, like our framework, has higher abstraction and
wider generality than stream programming and MapReduce.

Lee et al. [30] proposed an embedded language and its online compiler for
using GPUs in Haskell. Although they employed the idea of skeletons, their
main challenge is to use GPUs with monads in Haskell. Their approach differs
from ours in two respects: it had significant overhead and it did not support
fusion optimization. Lee et al. [31] developed OpenMP optimized for CUDA,
which is directive-based approach compared to our skeletal approach.

9 Conclusion

We have developed a skeletal parallel programming framework for GPGPU pro-
gramming that has a fusion optimizer. The framework enables rapid GPGPU
application development.

There are two directions for future work. One is to add other skeletons to
enrich applications. More applications can be described using our framework
if scan and shift are introduced. Thus, we will demonstrate expressiveness of
skeletons. The other is to improve the fusion analyzer. In the current implemen-
tation, the fusion optimization is a local optimization. The fusion optimizer can
perform a more powerful global optimization if the fusion analyzer gathers data

A Skeletal Parallel Framework with Fusion Optimizer 93

flow among basic blocks. In addition, we want to enhance the fusion analyzer to
check some part of contracts and restrictions of APIs at compile time.

Acknowledgments. We wish to thank Masato Takeichi, Kenetsu Hanabusa,
Zhenjiang Hu, Kiminori Matsuzaki, and other POP members in Tokyo for their
fruitful discussions. This work was partially supported by Grant-in-Aid for Sci-
entific Research (20500029) from the Japan Society of the Promotion of Science.

References

1. Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. MIT Press, Cambridge (1989)

2. Wadler, P.: Deforestation: Transforming programs to eliminate trees. In: Ganzinger,
H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 344–358. Springer, Heidelberg (1988)

3. Chin, W.: Safe Fusion of Functional Expressions. In: 7th ACM Conference on Lisp
and Functional Programming, pp. 11–20. ACM Press, New York (1992)

4. Gill, A., Launchbury, J., Peyton Jones, S.L.: A Short Cut to Deforestation. In:
Conference on Functional Programming Languages and Computer Architecture,
pp. 223–232 (1993)

5. Hu, Z., Iwasaki, H., Takeichi, M.: An Accumulative Parallel Skeleton for All. In: Le
Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 83–97. Springer, Heidelberg
(2002)

6. Iwasaki, H., Hu, Z.: A New Parallel Skeleton for General Accumulative Computa-
tions. International Journal of Parallel Programming 32, 398–414 (2004)

7. Emoto, K., Matsuzaki, K., Hu, Z., Takeichi, M.: Domain-Specific Optimization
Strategy for Skeleton Programs. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.)
Euro-Par 2007. LNCS, vol. 4641, pp. 705–714. Springer, Heidelberg (2007)

8. Kuchen, H.: A Skeleton Library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par
2002. LNCS, vol. 2400, pp. 85–124. Springer, Heidelberg (2002)

9. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible Skeletal Programming with
eSkel. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp.
761–770. Springer, Heidelberg (2005)

10. Falcou, J., Sérot, J., Chateau, T., Lapreste, J.T.: QUAFF: efficient C++ design
for parallel skeletons. Parallel Comput. 32(7-8), 604–615 (2006)

11. Matsuzaki, K., Emoto, K., Iwasaki, H., Hu, Z.: A Library of Constructive Skeletons
for Sequential Style of Parallel Programming. In: 1st International Conference on
Scalable Information Systems, vol. 13 (2006)

12. Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N., Buck, I., Woolley,
C., Lefohn, A.: GPGPU: General-Purpose Computation on Graphics Hardware.
In: ACM SIGGRAPH 2004 Course Notes (2004)

13. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware.
Comput. Graph. Forum 26(1), 80–113 (2007)

14. Bird, R.: Lecture Notes on Theory of Lists. STOP Summer School on Constructive
Algorithmics (1987)

15. Skillicorn, D.B.: The Bird-Meertens Formalism as a Parallel Model. In: Software
for Parallel Computation. NATO ASI Series F, vol. 106, pp. 120–133 (1993)

16. Gorlatch, S.: Systematic Efficient Parallelization of Scan and Other List Homo-
morphisms. In: Fraigniaud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.) Euro-Par
1996. LNCS, vol. 1124, pp. 401–408. Springer, Heidelberg (1996)

94 S. Sato and H. Iwasaki

17. NVIDIA Corporation: NVIDIA CUDATM Programming Guide Version 2.2 (2009)
18. Ålind, M., Eriksson, M.V., Kessler, C.W.: BlockLib: A Skeleton Library for Cell

Broadband Engine. In: 1st International Workshop on Multicore Software Engi-
neering, pp. 7–14 (2008)

19. Harris, M.: Optimizing Parallel Reduction in CUDA. Technical report, NVIDIA
Corporation (2007),
http://developer.download.nvidia.com/compute/cuda/1 1/Website/

projects/reduction/doc/reduction.pdf

20. Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards Parallel Pro-
gramming by Transformation: The FAN Skeleton Framework. Parallel Algorithms
Appl. 16, 87–121 (2001)

21. Grelck, C., Scholz, S.: Merging compositions of array skeletons in SAC. Parallel
Comput. 32(7-8), 507–522 (2006)

22. Scholz, S.B.: Single Assignment C: efficient support for high-level array operations
in a functional setting. J. Funct. Program. 13(6), 1005–1059 (2003)

23. Matsuzaki, K., Kakehi, K., Iwasaki, H., Hu, Z., Akashi, Y.: A Fusion-Embedded
Skeleton Library. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par
2004. LNCS, vol. 3149, pp. 644–653. Springer, Heidelberg (2004)

24. Kapasi, U., Dally, W.J., Rixner, S., Owens, J.D., Khailany, B.: The Imagine Stream
Processor. In: 20th IEEE InternationalConference on Computer Design, pp. 282–288
(2002)

25. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanra-
han, P.: Brook for GPUs: Stream Computing on Graphics Hardware. ACM Trans.
Graph. 23, 777–786 (2004)

26. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: 6th Symposium on Operating System Design and Implementation,
pp. 137–150 (2004)

27. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Commun. ACM 51, 107–113 (2008)

28. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: A MapReduce
Framework on Graphics Processors. In: 17th International Conference on Parallel
Architectures and Compilation Techniques, pp. 260–269 (2008)

29. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: A Programming
Model for Heterogeneous Multi-Core Systems. In: 13th International Conference
on Architectural Support for Programming Languages and Operating Systems,
pp. 287–296 (2008)

30. Lee, S., Chakravarty, M.M.T., Grover, V., Keller, G.: GPU Kernels as Data-Parallel
Array Computations in Haskell. In: Workshop on Exploiting Parallelism using
GPUs and other Hardware-Assisted Methods (2009)

31. Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: A Compiler Framework
for Automatic Translation and Optimization. In: 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 101–110 (2009)

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf

	A Skeletal Parallel Framework with Fusion Optimizer for GPGPU Programming
	Introduction
	Preliminaries
	BMF and Skeletal Parallelism
	CUDA

	Overview of Proposed Framework
	Design
	Principles
	APIs

	Fusion Transformation
	Implementation
	Compiler
	Fusion Optimizer
	API Implementation

	Experimental Results
	Related Work and Discussion
	Skeletal Parallel Programming
	GPGPU Programming

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

