
4
Arrays

4.1 Why do programmers need arrays?

Arrays are useful for processing many data or generating many results at once
into a compact contiguous structure. Loosely speaking, array structures allow
one to manipulate many variables at once. An array is an indexed sequence
of components. In mathematics, one is familiar with variables bearing indices
like, for example, the vector coordinates xi or matrix elements mi,j . In most
programming languages, indices start at zero and not at one as is often the
case in mathematics. This simple 1-or-0 convention actually yields confusion
to many novice programmers, and is therefore an important source of bugs to
watch for.

4.2 Declaring and initializing arrays

4.2.1 Declaring arrays

In Java, arrays are also typed structures: For a given type, say TYPE, TYPE[] is
the type of arrays storing a collection of homogeneous elements of type TYPE.
Local arrays are declared within the body of functions (delimited by braces) as
follows:

int [] x; // array of integers

F. Nielsen, A Concise and Practical Introduction to Programming Algorithms in Java,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-84882-339-6 4,
c© Springer-Verlag London Limited, 2009

84 4. Arrays

boolean [] prime; // array of booleans
double [] coordinates; // arrays of reals formatted using double precision

Similarly, static class arrays are declared inside the body of a class using the
keyword static:

class Example{
static int [] x;
static boolean [] prime;
...
}

These (class) static array variables can then be used and shared by any function
of the class. In both local/class cases, arrays are allocated into the global
memory, and not into the function call stack. Only the references of arrays
may be stored into the function call stack for locally declared arrays.

4.2.2 Creating and initializing arrays

Arrays are created and initialized by default using the Java reserved keyword
new:

int [] x = new int[5];
boolean [] prime = new boolean[16];

The size of arrays needs to be specified:

x=new int [32];

The size of an array can also be given as an integer arithmetic expression like
2*n, etc:

x=new int [2*n+3];

Arrays can only be declared once but may eventually be created and initialized
several times. This recreation process overrides the former creation/initializa-
tion:

x=new int [2*n+3];
...
x=new int [4*n-2]; // overrides the former creation and initialization

By default, initialization of arrays is performed by Java by filling all its elements
with 0, or by casting this 0 to the equivalent array element type: For example,
false for booleans, 0.0d for double, 0.0f for float, etc. Initialization can
also be explicitly done by enumerating all its elements separated by comas “,”
within curly brackets {} as follows:

int [] prime={2, 3, 5, 7, 11, 13, 17, 19};
boolean prime[]={ false, true, true, true, false, true, false, true};

4.2 Declaring and initializing arrays 85

In that case, the size of the array is deduced from the number of elements in
the set, and should therefore not be explicitly specified. Nor shall there be an
explicit creation using the keyword new. Here are a few examples illustrating
static array declarations, creations and initializations. Arrays can be declared
within the body of a function or globally as a static variable of the class. To
illustrate global static arrays, consider the following program:

Program 4.1 Static array declarations and creations
class ArrayDec larat ion {

stat ic int d i g i t [] = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0} ;
stat ic double x [] = {Math . PI , Math .E, 1 . 0 , 0 . 0 } ;
stat ic boolean prime []={ false , true , true , true , false ,

true , false , true , false , fa l se } ;
stat ic int y [] ;
stat ic void MyFunction (int n)
{

// Allocate an array of size n
y=new int [2∗n] ;

}
public stat ic void main (St r ing [] a rgs)
{
MyFunction (15) ;
// We recreate and initialize array y;
MyFunction (20) ; }

}

Observe that in this sample program, array y is created twice. In any case,
arrays are allocated and stored in the global memory, and not stored in the
local function call stack. Only the references of arrays are stored in the function
stack for arrays declared within functions (without the keyword static).

4.2.3 Retrieving the size of arrays: length

Arrays in Java carry additional information1 about themselves: Their types and
lengths. The size of an array array is accessed by using the keyword length,
post-appended to the array name with a “.” dot:

array.length

Observe that there are no parenthesis used in conjunction with the keyword
length.

stat ic boolean prime []={ false , true , true , true , false , true
, false , true , false , fa l se } ;

1 Technically speaking, we say that arrays in Java are reflexive since they contain
additional information. This is to contrast with arrays in C or C++ that are non-
reflexive since they contain only their components.

86 4. Arrays

System . out . p r i n t l n (prime . l ength) ;

We cannot change the size of arrays once initialized. For example, trying to force
the length of array array by setting array.length=23; will generate the fol-
lowing compiler message error: cannot assign a value to final variable

length.

4.2.4 Index range of arrays and out-of-range exceptions

Arrays created with the syntax array=new TYPE[Expression] have a fixed
length determined at the instruction call time by evaluating the expression
Expression to its integer value, say l (with l=array.length). The elements
of that array are accessed by using an index ranging from 0 (lower bound) to
l − 1 (upper bound):
array[0]
...
array[l-1]

A frequent programming error is to try to access an element that does not
belong to the array by giving an inappropriate index falling out of the range
[0, l − 1]. The following program demonstrates that Java raises an exception if
we try to use out-of-range indices:

Program 4.2 Arrays and index out of bounds exception
class ArrayBound{

public stat ic void main (St r ing [] a rgs)
{

int [] v={0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8} ;
long l=v . l ength ;
System . out . p r i n t l n ("Size of array v:"+l) ;
System . out . p r i n t l n (v [4]) ;
System . out . p r i n t l n (v [1 2]) ;

}
}

Running the above program yields the following console output:
Size of array v:9
4
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 12

at ArrayBound.main(ArrayBound.java:8)

That is, index out of bounds cannot be checked by the compiler and may
happen at any time when executing the program.
A subarray is a consecutive portion of an array: For example, array[3..7];.
Java does not provide language support for manipulating subarrays so that one
has to explicitly keep track of the lower and upper bounds of subarrays.

4.3 The fundamental concept of array references 87

4.2.5 Releasing memory and garbage collector

In Java, one does not need to explicitly release memory of unused memory
structures such as arrays. The Java virtual machine (JVM) does it fully
automatically using the garbage collector. Once the JVM detects that elements
of an array cannot be accessed anymore because the reference of that array
has been released by, say, the function call stack, the garbage collector will
free that memory. This is a key difference with another popular programming
language: C++. The garbage collector checks at any time whether elements of
a given array can still be accessed by some variables holding a reference to that
array or not. If not, the garbage collector releases that global memory and will
perform some memory cleaning operations. Nevertheless, we can also explicitly
indicate to the JVM that we do not want the array anymore by setting the
reference of that array to null, meaning that we erase the array reference:

int [] array=new int[32];
array=null; // explicitly indicate to the JVM to release the array

4.3 The fundamental concept of array references

Whether the array is declared as a local variable or as a global (static/class)
variable, all its elements are stored in the program global memory. That is, even
if local array variables are declared, created and initialized within a function,
their elements may still be accessed by the calling function once the function
is completed. This provides an essential mechanism for voluntarily having side-
effect phenomena in functions that can therefore potentially change the (global)
program environment. An array variable array is dealt as a reference to that
array, a single machine word from which its indexed elements can be accessed.
The notion of reference for non-primitive types in Java is essential. It can
be quite delicate to grasp at first for novice programmers but nevertheless
is essential. The main advantages of handling array variables (whatever their
sizes) as references (a single machine word using four bytes2) are as follows:

– References provide a mechanism for functions to access and modify elements
of arrays that are preserved when functions exit.

– When calling a function with array arguments, Java does not need to
allocate the full array on the function call stack, but rather pass a single
reference to that array. Therefore it is computationally and memory efficient.

2 That is equivalently 32 bits to reference a given memory location.

88 4. Arrays

Furthermore, this pass-by-reference mechanism limits the risk of function
stack overflow.

To illustate the notion of array references, consider the following set of
instructions:

Program 4.3 Arrays and references
int [] v = {0 , 1 , 2 , 3 , 4} ;
// That is, v[0]=0, v[1]=1, v[2]=2, v[3]=3, v[4]=4;
int [] t =v ;
// Reference of t is assigned to the reference of v so that t

[i]=v[i]
t [2]++; // Post -incrementation: t[2]=v[2]=3
System . out . p r i n t l n (t [2]++) ;
// Display 3 and increment t[2]=v[2]=4 now

The result displayed in the console is 3. In summary, an array is allocated as
a single contiguous memory block. An array variable stores a reference to the
array: This reference of the array links to the symbolic memory address of its
first element (indexed by 0).

Program 4.4 Assign an array reference to another array: Sharing common
elements
class ArrayReference {

public stat ic void main (St r ing [] a rgs)
{

int [] v={0 ,1 ,2 ,3 ,4} ;
System . out . p r i n t l n ("Reference of array u in memory:"+v) ;
System . out . p r i n t l n ("Value of the 3rd element of array v:"

+v [2]) ;
// Declare a new array and assign its reference to the

reference of array v
int [] t =v ;
System . out . p r i n t l n ("Reference of array v in memory:"+v) ;

// same as u
System . out . p r i n t l n (v [2]) ;
t [2]++;
System . out . p r i n t l n (v [2]) ;
v [2]++;
System . out . p r i n t l n (t [2]) ;

}
}

Running this program, we notice that the reference of the array u coincides
with the reference of array v:

Reference of array u in memory:[I@3e25a5
Value of the 3rd element of array v:2
Reference of array v in memory:[I@3e25a5
2

4.3 The fundamental concept of array references 89

3
4

The I in [I@3e25a5 indicates that this is a reference to an array of integers.
The forefront letter varies according to the type of array elements as illustrated
by the following code:

Program 4.5 Printing the references of various typed arrays
class ArrayDisplay {

public stat ic void main (St r ing [] a rgs)
{
int [] x=new int [1 0] ; System . out . p r i n t l n (x) ;
double [] y=new double [2 0] ; System . out . p r i n t l n (y) ;
f loat [] z=new float [5] ; System . out . p r i n t l n (z) ;
boolean [] b=new boolean [7] ; System . out . p r i n t l n (b) ;
}

}

We get3:

[I@3e25a5
[D@19821f
[F@addbf1
[Z@42e816

v

[I

6
2

3
1

2

7

1

0

1
2
3

4

5

type

length

Figure 4.1 A way to visualize arrays in
Java, explained for the array declaration and
assignment: int [] v={2,3,1,2,7,1}; .

One way to depict arrays is shown in Figure 4.1. Note that the length and type
of the array are indicated in this representation (reflexive arrays).

3 An array of strings has type [Ljava.lang.String;

90 4. Arrays

4.4 Arrays as function arguments

Functions and procedures can have arrays as arguments too. Remember that
arrays of element types TYPE are themselves of type TYPE [], so that the syntax
for declaring a function using an array argument and calling it is:

static void MyFunction(int [] x)
{...}
...
int [] v=new int[10];
// Calling the function with an array argument
MyFunction(v);

For example, consider implementing a function that returns the minimum
element of an array of integers provided as a function argument:

Program 4.6 Array argument in functions: Minimum element of an array
class ArrayMinimum{

stat ic int minArray (int [] t)
{

int m=t [0] ;
for (int i =1; i<t . l ength ; ++i)

i f (t [i]<m)
m=t [i] ;
return m;

}

public stat ic void main (St r ing [] a rgs)
{
int [] v=new int [2 3] ;

for (int i =0; i <23; i++)
v [i]=(int) (Math . random () ∗100) ; // int from 0 to 99

System . out . p r i n t l n ("The minimum of the array is :"+minArray
(v)) ;

}
}

Since we initialize the array by filling it with random elements using the
Math.random() function, running the code several times may yield different
outputs. For example, running the compiled bytecode three times in a row
yields the following results:

The minimum of the array is :4
The minimum of the array is :2
The minimum of the array is :1

4.4 Arrays as function arguments 91

We say that the code is non-deterministic because it uses some randomness4

provided by the function Math.random(). The following example demonstrates
that only references of arrays are passed by functions:

Program 4.7 Creating and reporting array information using functions
class ArrayInFunction{

public stat ic void MyFunction (int n)
{

int array []=new int [n] ;
int i ;
InformationArray (array) ;

}
public stat ic void InformationArray (int [] t)
{System . out . p r i n t l n ("Size of array given in argument is:"+t

. l ength) ;}

public stat ic void main (St r ing [] a rgs)
{

MyFunction (2312) ;
MyFunction (2008) ;
int x []=new int [1 2] ;

}
}

Running the program, we get:

Size of array given in argument is:2312
Size of array given in argument is:2008

Arrays are useful structures for storing coordinates of vectors. Let us consider
programming the inner product of two vectors modeled as arrays. We end-up
with the following code:

Program 4.8 Calculating the inner product of two vectors given as arrays
class VectorInnerProduct {

stat ic double innerproduct (int [] x , int [] y)
{
double sum=0.0;
System . out . p r i n t l n ("Dim of vector x:"+x . l ength+ " Dim of

vector y:"+y . l ength) ;

for (int i =0; i<x . l ength ; ++i)
sum=sum+x [i]∗ y [i] ;

return sum ;
}

public stat ic void main (St r ing [] a rgs)

4 Since the randomness is emulated by some specific algorithms, we prefer to use the
term pseudo-randomness.

92 4. Arrays

{
int dimension =30;
int [] v1 , v2 ;

v1=new int [dimension] ; v2=new int [dimension] ;

for (int i =0; i<dimension ; i++)
{v1 [i]=(int) (Math . random () ∗100) ; // random int [0,99]
v2 [i]=(int) (Math . random () ∗100) ; // random int [0,99]

}
System . out . p r i n t l n ("The inner product of v1 and v2 is "+

innerproduct (v1 , v2)) ;
}

}

Running this program, we get:

Dim of vector x:30 Dim of vector y:30
The inner product of v1 and v2 is 80108.0

Static (class) functions may also return an array as a result of their calculation.
A typical example is the addition of two vectors that yields another vector of
the same dimension:

Program 4.9 Function returning an array: Addition of vectors
class VectorAddit ion {

stat ic int [] VectorAddit ion (int [] u , int [] v)
{

int [] r e s u l t=new int [u . l ength] ;

for (int i =0; i<u . l ength ; i++)
r e s u l t [i]=u [i]+v [i] ;

return r e s u l t ;
}

public stat ic void main (St r ing [] a rgs)
{
int [] x={1, 2 , 3} ; int [] y={4, 5 , 6} ;
int [] z= VectorAddit ion (x , y) ;

for (int i =0; i<z . l ength ; i++)
System . out . p r i n t (z [i]+" ") ;

}
}

The following example demonstrates how one can persistently modify inside a
function the contents of an array passed as an argument. That is, this array
element swapping program shows that the values of the elements of the array
can be changed after exiting the function.

4.5 Multi-dimensional arrays: Arrays of arrays 93

Program 4.10 Swapping array elements by calling a function
class ModifyArray{
stat ic void swap (int [] t , int i , int j)
{

int tmp ;
tmp=t [i] ;
t [i]= t [j] ;
t [j]=tmp ;

}

stat ic void DisplayArray (int [] x)
{ for (int i =0; i<x . l ength ; i++)

System . out . p r i n t (x [i]+" ") ;
System . out . p r i n t l n () ;

}

public stat ic void main (St r ing [] a rgs)
{
int [] t ={1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9} ;
DisplayArray (t) ;
swap (t , 2 , 3) ;
DisplayArray (t) ;

}
}

We observe that the third and fourth element (corresponding respectively to
index 2 and 3) have indeed been swapped:

1 2 3 4 5 6 7 8 9
1 2 4 3 5 6 7 8 9

4.5 Multi-dimensional arrays: Arrays of arrays

4.5.1 Multi-dimensional regular arrays

We have so far considered linear arrays (also called 1D arrays). These 1D arrays
have proved useful for storing vector coordinates and processing arithmetic
operations on them (see, for example, the former scalar product and vector
addition programs). What about manipulating 2D matrices M = [mi,j] with n

rows and m columns? Of course, once the dimensions n and m are known, we
can map the elements mi,j of a 2D matrix to a 1D vector in R

n×m by linearizing
the matrix and using the following index correspondence:

(i, j) ⇔ i × m + j.

94 4. Arrays

This index remapping5 is quite cumbersome to use in practice and may
yield various insidious bugs. Fortunately in Java, we can also create multi-
dimensional arrays easily; Java will perform the necessary index remapping
accordingly. A regular bi-dimensional array consists of n lines, each line being
itself an array of m elements. A 2D matrix of integers has type int [] [] and
is declared, created and initialized as follows:

int [] [] matrix;
matrix=new int[n][m];

By default at the initialization stage, the array matrix is filled up with all zero
elements. We can change the contents of this 2D array using two nested loops,
as follows:

for(int i=0; i<n; i++)
for(int j=0; j<m;j++)

matrix[i][j]=i*j+1;

These constructions extend to arbitrary array dimensions. For example, a 3D
array may be defined as follows:

int [] [] [] volume;
volume=new double[depth][height][width];

Let us illustrate the manipulations of linear and bi-dimensional arrays by imple-
menting the matrix vector product operation. Observe the declaration/creation
and initialization of a 2D array by enumerating all its elements:

int [][] M={{1, 2, 3}, {4,5,6}, {7,8,9}};

Program 4.11 Matrix-vector product function
class MatrixVectorProduct {

stat ic int [] Mult ip lyMatr ixVector (int [] [] mat , int [] v)
{

int [] r e s u l t ;
r e s u l t=new int [mat . l ength] ;

for (int i =0; i<r e s u l t . l ength ; i++)
{

r e s u l t [i]=0;
for (int j =0; j<v . l ength ; j++)

r e s u l t [i]+= mat [i] [j]∗ v [j] ;
}

return r e s u l t ;
}
public stat ic void main (St r ing [] a rgs)
{

int [] [] M={{1 , 2 , 3} , {4 ,5 ,6} , {7 ,8 , 9}} ;
int [] v={1 ,2 ,3} ;

5 We arbitrarily chose row major order. We can also choose the column major order.

4.5 Multi-dimensional arrays: Arrays of arrays 95

int [] z= Mult iplyMatr ixVector (M, v) ;

for (int i =0; i<z . l ength ; i++)
System . out . p r i n t (z [i]+" ") ;

}
}

Thus it is quite easy to write basic functions of linear algebra. Note that in Java,
it is not necessary6 to provide the function with the array dimensions since we
can retrieve these dimensions with the length keyword, as shown below:

Program 4.12 Creating multidimensional arrays and retrieving their
dimensions
class MultidimArrays
{
stat ic void f2D (double [] [] tab)
{

System . out . p r i n t l n ("Number of lines:"+tab . l ength) ;
System . out . p r i n t l n ("Number of columns:"+tab [0] . l ength) ;

}
stat ic void f3D (double [] [] [] tab)
{

System . out . p r i n t l n ("Number of lines X:"+tab . l ength) ;
System . out . p r i n t l n ("Number of columns Y:"+tab [0] . l ength) ;
System . out . p r i n t l n ("Number of depths Z:"+tab [0] [0] . l ength) ;

}
public stat ic void main (St r ing [] a rgs)
{

double [] [] var=new double [3] [4] ;
f2D (var) ;
double [] [] [] tmp=new double [4] [5] [7] ;
f3D (tmp) ;

}
}

Running this program, we see that we correctly retrieved the 2D and 3D array
dimensions given as function arguments:
Number of lines:3
Number of columns:4
Number of lines X:4
Number of columns Y:5
Number of depths Z:7

4.5.2 Multi-dimensional ragged arrays **

Multi-dimensional arrays need not be regular: They can be completely irregular.
That is, a multi-dimensional array can also be defined as a 1D array of arrays,
6 In the C programming language, one has to pass these dimensions as arguments.

96 4. Arrays

each array “element” being itself an array with its own dimensions. However,
these arrays should all store the same type of elements. To create such ragged
arrays, we first need to declare the 1D array of arrays, and then proceed by
declaring each individual array using a loop statement. For example, to declare
and create a 2D ragged array of integers, we write the following statements:

ragged

[[I

5
[I

1

[I

5

Figure 4.2 Visualizing the
structure of a ragged array in
the global memory

int ragged[][] = new int[5][];
for (int i = 0; i < 5; i++)
{ragged[i] = new int[i + 1];}

The elements of the ragged arrays are either initialized by default (value zero)
or by using nested loops as follows:

for (int i = 0; i < 5; i++)
{for (int j = 0; j < ragged[i].length; j++)
{ ragged[i][j] = (int)(10*Math.random()); // random init.
}
}

Note that ragged[i] stores references7 to linear arrays of integers. To visualize
the entries of the ragged array, consider the following instructions:

System.out.println("type:"+ragged+" "+ragged.length);
for (int i = 0; i < 5; i++)
System.out.println("type:"+ragged[i]+" "+ragged[i].length);

7 In general, the type of elements contained in the ragged array may be retrieved
using array.getClass();

4.6 Arrays of strings and main function 97

We get the following output:

type:[[I@addbf1 5
type:[I@42e816 1
type:[I@9304b1 2
type:[I@190d11 3
type:[I@a90653 4
type:[I@de6ced 5

Observe that array ragged is printed as a bi-dimensional array of integers
using the “[[” notational convention: [[I@addbf1. Similarly to Figure 4.1, we
can visualize ragged arrays as depicted in Figure 4.2.

4.6 Arrays of strings and main function

Strings of type String are not primitive types of Java. Though they can
be constructed from literals and are immutable, strings are considered as
special Java objects. Strings are not arrays of characters char. In other words,

String �= char [].
These object notions shall be explained in the next chapter. We can also build
arrays of strings that are of type String [], and functions may have string
arrays as arguments. Actually, we are already very familiar with the main

function of all Java programs that take as argument an array of strings:

class ProgramName
{
public static void main(String[] args)
{
...
}
}

For example, the following program lists all string arguments given in the line
command when invoking the java virtual machine on the bytecode:

Program 4.13 Writing to the output the arguments of the invoked main

function
class ParsingMain
{

public stat ic void main (St r ing [] a rgs)
{
for (int i =0; i<args . l ength ; i++)

System . out . p r i n t l n (i+":"+args [i]) ;
}

}

98 4. Arrays

After compiling this code, let us execute the bytecode using java as follows:

prompt%java ParsingMain Once upon a time there was a programming language
named Java!

0:Once
1:upon
2:a
3:time
4:there
5:was
6:a
7:programming
8:language
9:named
10:Java!

We can use the string array passed as argument of the main function of
programs, to process inputs. Since these elementary inputs are considered as
strings, we may eventually need to re-interpret them into the appropriate type
before processing them. For example, consider the following program that seeks
for the smallest integer entered in the arguments of the command line:

Program 4.14 Array of strings in main
class ParseArgumentsMin{

public stat ic void main (St r ing [] a rgs)
{

int indexMin=0;
for (int i =1; i<args . l ength ; i++)
i f (I n t eg e r . pa r s e In t (args [indexMin])>I n t ege r . pa r s e In t (

args [i]))
indexMin=i ;

System . out . p r i n t l n ("Maximum argument found at index:"+
indexMin+" :"+args [indexMin]) ;

}
}

Compiling and running this program with argument strings “345”, “546”,
“234”, “2” and “45”, we get:

prompt%javac ParseArgumentsMinInt.java

prompt%java ParseArgumentsMin 345 546 234 2 45
Maximum argument found at index:3 :2

Once the strings are converted into corresponding integers using the library
function Integer.parseInt, we get the index of the smallest argument: 2.
Indeed args[3] corresponds to the string “2.”

4.7 A basic application of arrays: Searching ** 99

4.7 A basic application of arrays: Searching **

Consider the following simple search problem encountered very day by in
programmers: We are given a set E of n integers E = {E1, ..., En}, and we
would like to know whether a given query element E belongs to that set or not:
That is mathematically for short, E ∈ E?. This search task is essential to decide
whether we should add this element to the set or not. Let the data-structure
for storing the n elements of E be an array named array.
The sequential search inspects in turn all the array elements array[i] and
performs a comparison with the query element E to check for equality or not. If
for a given index position i the query element matches the array element (that
is, predicate array[i]==E is evaluated to true) then the element is found and
the index of its position in the array is reported. Otherwise, we need to browse
the full array before answering that E was not found in the array. This sequential
search approach is summarized by the following program:

Program 4.15 Sequential search: Exhaustive search on arrays
class Sequent ia lSearch {

stat ic int Sequent ia lSearch (int [] array , int key)
{ int i ;
for (i =0; i<array . l ength ; i++)

i f (array [i]==key)
return i ;

return −1;
}

public stat ic void main (St r ing [] a rgs)
{
int [] v={1 ,6 ,9 ,12 ,45 , 67 , 76 , 80 , 95} ;

System . out . p r i n t l n ("Seeking for element 6: Position "+
Sequent ia lSearch (v , 6)) ;

System . out . p r i n t l n ("Seeking for element 80: Position "+
Sequent ia lSearch (v , 8 0)) ;

System . out . p r i n t l n ("Seeking for element 33: Position "+
Sequent ia lSearch (v , 3 3)) ;

}
}

Running the program, we get the following output:
Seeking for element 6: Position 1
Seeking for element 80: Position 7
Seeking for element 33: Position -1

For query elements that are not present inside the array, we have to wait to
reach the end of array to return −1. This explains why this sequential search is

100 4. Arrays

also called the linear search since it takes time proportional to the array length.
The algorithmic question raised is to know whether there exists or not a faster
method? Observe that in the above program the array elements were ordered in
increasing order. We should try to use this extra property to speed-up the search
algorithm. The idea is to skip browsing some portions of the arrays for which
we know that the query element cannot be found for sure. Start with a search
interval [left, right] initialized with the extremal array indices: left= 0 and
right= n−1 where n denote the array length array.length. Let m denote the
index of the middle element of this range: m = (left + right)/2. Then execute
recursively the following steps:

– If array[m]==E then we are done, and we return index m,

– If array[m] <E, then if the element is inside the array, it is necessarily within
range [m + 1, right],

– If array[m] >E, then if the element is inside the array, it is necessarily within
range [left,m + 1].

The search algorithm terminates whenever we find the element, or if at some
point left>right. In that latter case, we return index −1 for reporting that we
did not find the query element. Thus the dichotomic search (also called binary
search) is a provably fast method for searching whether or not a query element
is inside a sorted array by successively halving the index range. The number of
steps required to answer an element membership is thus proportional to log2 n.
The dichotomic search is said to have logarithmic time complexity. These time
complexity notions will be further explained in Chapter 6. We summarize the
bisection search by the following code:

Program 4.16 Binary search: Fast dichotomic search on sorted arrays
class BinarySearch {
stat ic int Dichotomy (int [] array , int l e f t , int r i ght , int

key)
{
i f (l e f t >r i g h t)

return −1;
int m=(l e f t+r i gh t) /2 ;
i f (array [m]==key)

{return m;}
else
{
i f (array [m]<key) return Dichotomy (array ,m+1, r ight , key) ;

else return Dichotomy (array , l e f t ,m−1, key) ;
}

}
stat ic int DichotomicSearch (int [] array , int key)
{return Dichotomy (array , 0 , array . length −1, key) ;}
public stat ic void main (St r ing [] a rgs)

4.8 Exercises 101

{
int [] v={1 ,6 ,9 ,12 ,45 , 67 , 76 , 80 , 95} ;
System . out . p r i n t l n ("Seeking for element 6: Position "+

DichotomicSearch (v , 6)) ;
System . out . p r i n t l n ("Seeking for element 80: Position "+

DichotomicSearch (v , 8 0)) ;
System . out . p r i n t l n ("Seeking for element 33: Position "+

DichotomicSearch (v , 3 3)) ;
}

}

We get the following console output:
Seeking for element 6: Position 1
Seeking for element 80: Position 7
Seeking for element 33: Position -1

4.8 Exercises

Exercise 4.1 (Array of strings)

Write a static function DisplayArray that reports the number of
elements in an array of strings, and displays in the console output
all string elements. Give another function DisplayReverseArray that
displays the array in reverse order.

Exercise 4.2 (Pass-by-value array arguments)

Explain why the following permute function does not work:

Program 4.17 Permuting strings and Java’s pass-by-reference
class ExoArray{

stat ic void permute (S t r ing s1 , S t r ing s2)
{
St r ing tmp=s1 ;
s1=s2 ;
s2=tmp ;
}
public stat ic void main (St r ing args [])
{
St r ing [] array={"shark" , "dog" , "cat" , "crocodile" } ;
permute (array [0] , array [1]) ;
System . out . p r i n t l n (array [0]+ " "+array [1]) ;
}
}

Give a static function static void permute(String [] tab, int i,

int j) that allows one to permute the element at index position i with

102 4. Arrays

the element at index position j. Explain the fundamental differences with
the former permute function.

Exercise 4.3 (Searching for words in dictionary)

Consider a dictionary of words stored in a plain array of strings: String
[] dictionary. Write a function static boolean isInDictionary

that takes as argument a given word stored in a String variable, and
report whether the word is already defined inside the dictionary or not.
Explain your choice for performing equality tests of words.

Exercise 4.4 (Cumulative sums: Sequential and recursive)

Write a function that takes a single array argument of elements of
type double, and returns its cumulative sum by iteratively adding the
elements altogether. Computing the cumulative sum of an array can also
be done recursively by using, for example, the following function proto-
type CumulativeSumRec(double array, int left, int right). Im-
plement this function and test it using CumulativeSumRec(array, 0,

array.length-1);

Exercise 4.5 (Chasing bugs)

The following program when executed yields the following exception:

Exception in thread "main" java.lang.NullPointerException
at BugArrayDeclaration.main(BugArrayDeclaration.java:8)

Program 4.18 Bug in array declaration
class BugArrayDeclaration
{
public stat ic void main (St r ing [] t)
{
int [] array ;
int [] array2=null ;
array=array2 ;
array [0]=1 ;
}
}

Find the bug and correct the program so that it runs without any bug.

Exercise 4.6 (Sieve of Eratosthenes)

One wants to compute all prime integers falling within range [2, N] for
a prescribed integer N ∈ N. The sieve of Eratosthenes algorithm uses a
boolean array to mark prime numbers, and proceeds as follows:

4.8 Exercises 103

– First, the smallest prime integer is 2. Strike off 2 and all multiples of
2 in the array (setting the array elements to false),

– Retrieve the smallest remaining prime number p in the array (marked
with boolean true), and strike off all multiples of p,

– Repeat the former step until we reach at some stage p >
√

N , and list
all prime integers.

Design a function static int[] Eratosthene(int N) that returns in
an integer array all prime numbers falling in range [2, N].

Exercise 4.7 (Image histogram)

Consider that an image with grey level ranging in [0, 255] has been
created and stored in the regular bi-dimensional data-structure byte

[] [] img;. How do we retrieve the image dimensions (width and
height) from this array? Give a procedure that calculates the histogram
distribution of the image. (Hint: Do not forget to perform the histogram
normalization so that the cumulative distribution of grey colors sums up
to 1.)

Exercise 4.8 (Ragged array for symmetric matrices)

A d-dimensional symmetric matrix M is such that Mi,j = Mj,i for all
1 ≤ i, j ≤ d. That is, matrix M equals its transpose matrix: MT = M .
Consider storing only the elements Mi,j with d ≥ i ≥ j ≥ 1 into a ragged
array: double [] [] symMatrix=new double [d][];. Write the array
allocation instructions that create a 1D array of length i for each row of
the symMatrix. Provides a static function that allows one to multiply two
such symmetric matrices stored in “triangular” bi-dimensional ragged
arrays.

Exercise 4.9 (Birthday paradox **)

In probability theory, the birthday paradox is a mathematically well-
explained phenomenon that states that the probability of having at least
two people in a group of n people having the same birthday is above 1

2

for n ≥ 23. For n = 57 the probability goes above 99%. Using the
Math.random() function and a boolean array for modeling the 365 days,
simulate the birthday paradox experiment of having at least two people
having the same birthday among a set of n people. Run this birthday
experiment many times to get empirical probabilities for various values
of n. Then show mathematically that the probability of having at least
two person’s birthdays falling the same day among a group of n people
is exactly 1 − 365!

365n(365−n)! .

	Arrays
	Why do programmers need arrays?
	Declaring and initializing arrays
	Declaring arrays
	Creating and initializing arrays
	Retrieving the size of arrays: length
	Index range of arrays and out-of-range exceptions
	Releasing memory and garbage collector

	The fundamental concept of array references
	Arrays as function arguments
	Multi-dimensional arrays: Arrays of arrays
	Multi-dimensional regular arrays
	Multi-dimensional ragged arrays **

	Arrays of strings and main function
	A basic application of arrays: Searching **
	Exercises

