
Fast Local-Spin Abortable Mutual Exclusion

with Bounded Space

Hyonho Lee

Department of Computer Science
University of Toronto, Toronto, ON, Canada, M5S 3G4

hlee@cs.toronto.edu

Abstract. Abortable mutual exclusion is a variant of mutual exclusion,
where processes are allowed to abort their invocations while waiting to
enter the critical section. In this paper, we present an FCFS abortable
mutual exclusion algorithm with bounded time and space, in which each
invocation performs O(k2) RMAs if at most k processes abort. We define
an object type, S-HAD, from which it is easy to construct local-spin
abortable mutual exclusion algorithms. Our main contribution is a wait-
free implementation of an S-HAD object. We also develop a new, wait-
free memory reclamation method, which generalizes reference counting,
to achieve bounded space. The resulting algorithm uses O(N2) shared
variables, each with O(log N) bits, where N is the number of processes.

1 Introduction

Abortable mutual exclusion [13] is a variant of classical mutual exclusion [5],
in which a process performing a trying protocol to enter the critical section is
allowed to stop waiting for the critical section to become available by performing
an abort protocol, which returns the process to the remainder section within a
bounded number of steps. Abortable mutual exclusion can be useful in real-time
applications or in parallel database systems because, in these systems, users may
want to abort any operation that takes too long [13].

In shared memory models, processes communicate with each other only via
shared variables, so waiting processes must keep accessing shared variables until
they stop waiting. Such busy-waiting may cause processes to perform an un-
bounded number of steps during the trying protocol. In the distributed shared
memory (DSM) and cache-coherent (CC) models, the cost for a process to access
its own local shared memory or cache is considered to be much less than the cost
to access memory located remotely. Hence, in these models, counting only remote
memory accesses (RMAs, also known as remote memory references) is a good
measure of the time complexity of an algorithm. To achieve a bounded num-
ber of RMAs, many papers about mutual exclusion have considered local-spin
algorithms. In such algorithms, each process accesses only a bounded number
of RMAs while busy-waiting. In this paper, we restrict attention to local-spin
algorithms.

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 364–379, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 365

In some classical mutual exclusion algorithms, such as the Bakery algorithm
[10], which are not local-spin, all waiting processes wait for the same shared
variable to change. Then a process can abort by simply announcing that it is no
longer trying. Scott and Scherer [13] proposed two first-come-first-served (FCFS)
local-spin mutual exclusion algorithms that allow waiting processes to abort. In
their first algorithm, each process waits for a change in a certain shared variable
associated with its predecessor (the last process that was enqueued before it).
This algorithm is local-spin in the CC model. In their second algorithm, each
waiting process first announces itself to its predecessor and then waits for a
certain locally stored variable to change value. This algorithm is local-spin in
the DSM model. In these algorithms, processes in the trying protocol form a
queue and each waits for a signal from its predecessor. In Scott and Scherer’s
algorithms, each process enters the critical section within O(1) RMAs when no
process aborts. However, their abort protocol contains a waiting period in which
an aborting process performs handshakes with its predecessor and successor in
the queue, so it may not terminate the abort protocol within a bounded number
of steps.

Later, Scott [12] eliminated this waiting period in the abort protocol: He pre-
sented two FCFS local-spin abortable mutual exclusion algorithms in which a
process aborts within a bounded number of its own steps. When no processes
abort, each invocation performs only a constant number of RMAs in the try-
ing protocol. However, when two or more processes repeatedly abort without
removing themselves from the queue of waiting processes and then re-enter the
trying protocol, the length of the queue may become unbounded. Hence, these
algorithms use unbounded space. The number of RMAs a process performs in
the trying protocol can be as large as the number of consecutive times processes
began the trying protocol immediately beforehand and subsequently aborted
[12,9]. This can be arbitrarily large, since a process can repeatedly enter the try-
ing protocol and abort. However, the bad situation is only achieved when each
invocation that aborts decides to do so before its predecessor begins the abort
protocol.

In Section 2.4 of [12], Scott described a simple abortable mutual exclusion
algorithm with Θ(N) space. This algorithm also uses a queue. When a process
starts its trying protocol, it enqueues an element, and waits for the value of its
predecessor in the queue to change. When a process aborts, it changes the value
of the element it last enqueued. If this process re-enters the trying protocol, then
it checks whether the element it last enqueued has been accessed and, if not, it
reclaims this element, instead of enqueuing a new element. However, in this
algorithm, a process can perform an unbounded number of RMAs in the trying
protocol. For example, suppose process p is the predecessor of another process
q in the queue, and q is waiting for the value of p’s element to be changed.
When p aborts, it changes the value of its element. If it re-enters the trying
protocol and reclaims the same element, it changes the value of the element
back to its previous value. Even if q did not notice p’s abort, q’s next read of
p’s element generates a cache miss. Thus, if p aborts and re-enters the trying

366 H. Lee

protocol, reclaiming the same element an unbounded number of times, q may
perform an unbounded number of RMAs while waiting. Thus this algorithm is
not local-spin or FCFS.

There are two previously known FCFS local-spin abortable mutual exclusion
algorithms with bounded space in which each process performs a bounded num-
ber of RMAs for each entry to the critical section: Jayanti [9] uses registers and
LoadLinked/StoreConditional (ll/sc), and Danek and Lee [3] use only registers.
Jayanti’s algorithm performs Θ(min(k, log N)) and Danek and Lee’s algorithm
performs Θ(N) RMAs for each entry to the critical section, where N is the num-
ber of processes and k is the contention, i.e., the number of processes that are
trying to enter the critical section at the same time. Danek and Lee also pre-
sented a local-spin abortable mutual exclusion algorithm with Θ(log N) RMAs
that does not satisfy FCFS. Since any mutual exclusion algorithm using only
registers and comparison primitives, such as compare and swap or ll/sc, re-
quires Ω(log N) RMAs in the worst case for each entry to the critical section [2]
and, since mutual exclusion is a special case of abortable mutual exclusion, both
Jayanti’s algorithm and Danek and Lee’s Θ(log N) algorithm are optimal.

In the worst case, each process performs fewer RMAs in Jayanti’s algorithm
than in Scott’s local-spin algorithms. However, if the number of consecutive
aborts is o(log N), then Scott’s algorithms are better in terms of the number of
RMAs. A natural question is whether there exists a local-spin abortable mutual
exclusion algorithm that preserves all of the merits of Scott’s algorithms, but
uses only bounded space and performs a bounded number of RMAs in the worst
case.

In this paper, we present a new FCFS local-spin abortable mutual exclusion
algorithm for the CC model. It uses O(N2) space and a process performs O(k2)
RMAs to enter the critical section, where k is the number of processes that
began the trying protocol immediately beforehand and subsequently aborted.
The worst case is only achieved when each invocation returns to the remainder
section and re-enters the trying protocol before its predecessor begins the abort
protocol.

For modularity, we first define an object type, S-HAD, from which it is easy
to construct a local-spin abortable mutual exclusion algorithm. S-HAD is a se-
quence that supports Head, Append, and Delete, but with two restrictions: Each
process can own at most one element in the sequence at a time and only the
owner of an element can perform these three operations on it.

We give two wait-free implementations of an S-HAD object. Our first imple-
mentation has O(N2) RMA complexity but uses unbounded space. Then, we
extend it, using a generalization of reference counts, to achieve O(N2) space
complexity as well. Our new memory reclamation method is wait-free and very
efficient in terms of RMAs. It uses only standard operations (test and set,
fetch and add, fetch and store, read and write) on O(log N) bit words,
and each process performs O(1) RMAs for recycling a record. In contrast, Detlefs
et al.’s reference counting method [4] uses double compare and swap, which
is not available in most systems, and Valois’s reference counting method [14]

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 367

allows processes to access a freed record or a recycled record, which would cause
a significant increase in the RMA complexity of our algorithm. With hazard
pointers [11], to reuse a record, a process must read the hazard pointers of all
other processes, which takes Θ(N) RMAs. Herlihy et al. [7] proposed a refer-
ence counting method similar to hazard pointers. Their method also takes Θ(N)
RMAs. Since we want each process to perform a small number of RMAs if aborts
are rare, we needed to develop a new memory reclamation method.

Section 2 formally defines abortable mutual exclusion and describes the system
model. Section 3 defines S-HAD, gives an abortable mutual exclusion algorithm
based on S-HAD, and proves the correctness of the algorithm. Section 4 presents
our unbounded space implementation of S-HAD, and Section 5 presents our
bounded space implementation of S-HAD. Complete proofs of correctness of the
algorithms in Sections 4 and 5 appear in the full paper.

2 Preliminaries

In an abortable mutual exclusion algorithm, processes that want to access the
critical section first execute the trying protocol. After completing the trying
protocol, a process enters the critical section. When it finishes the critical section,
it then performs the exit protocol, and finally returns to the remainder section.
If a process must wait in the trying protocol and wants to abort, it performs
the abort protocol, and then returns to the remainder section. We assume no
process failures.

An algorithm solves the abortable mutual exclusion problem, if it satisfies the
following properties:

Mutual Exclusion: At most one process is in the critical section at any time.
Lockout Freedom: If a process p starts executing the trying protocol and keeps
taking steps in the trying protocol without aborting, then it will eventually enter
the critical section.
Bounded Exit: If a process starts executing the exit protocol, then it returns
to the remainder section within a bounded number of its own steps.
Bounded Abort: If a process starts executing the abort protocol, then it re-
turns to the remainder section within a bounded number of its own steps.

The First-Come-First-Served (FCFS) property [10] is a strong fairness condi-
tion in which processes enter the critical section in roughly the same order they
enter the trying protocol. Although it is not a requirement of abortable mutual
exclusion, most mutual exclusion algorithms in which each process performs O(1)
RMAs to enter the critical section satisfy this property.
FCFS: The doorway is a bounded section of code that begins the trying protocol.
If a process p finishes executing the doorway before a process q begins executing
the doorway, and p does not abort, then p enters the critical section before q
does.

In this paper, we consider the asynchronous cache-coherent (CC) model with
N processes [1]. The CC model is a shared memory model in which each process

368 H. Lee

has its own local cache. In this model, processes perform atomic operations
on shared variables. We divide all atomic operations into two classes: trivial
operations, which cannot change the value of a shared variable, and non-trivial
operations, which may change the value of a shared variable. read is an example
of a trivial operation. write, fetch and store and compare and swap are
examples of non-trivial operations.

When a process p performs a trivial operation on a shared variable, it first
checks its own cache. If p has a valid cached copy of the shared variable (i.e.
no other process has performed a non-trivial operation on the shared variable
since p last accessed the shared variable and copied it to its cache), the trivial
operation does not generate an RMA. If p does not have a valid cached copy of
the shared variable (either because p has not accessed the shared variable before
or because another process has performed a non-trivial operation on the shared
variable after p’s last access of the shared variable), then p accesses the shared
variable from remotely located shared memory and copies the variable to its own
cache. This generates an RMA. When p performs a non-trivial operation on a
shared variable, even if the value of the variable does not change, the system
invalidates all other cached copies of the variable, which generates an RMA.

A passage is the sequence of steps performed by a process from when it begins
the trying protocol until it next returns to the remainder section by finishing
the exit or abort protocol. Our complexity measure is the worst case number of
RMAs performed in the trying, exit, and abort protocols in any passage.

3 S-HAD and Abortable Mutual Exclusion

An S-HAD is a sequence of elements, each owned by a different process. A process
can perform the following operations on an element that it owns:

Head(R): returns TRUE if element R is at the beginning of the sequence.
Append(R): appends element R to the end of the sequence.
Delete(R): deletes element R from the sequence.

Append(R) may be called only when R is not in the sequence, and Delete(R)
may be called only when R is in the sequence. Thus, element R occurs in the
sequence if and only if Delete(R) has not been performed since Append(R) was
last performed. Head(R) is TRUE if and only if R occurs in the sequence and
each element X that was appended before R has been deleted from the sequence.

We can easily build an abortable mutual exclusion algorithm using a lineariz-
able implementation of an S-HAD object. When a process tries to enter the
critical section, it appends a new element to the S-HAD object. Then the pro-
cess keeps performing Head until its element is at the head of the S-HAD object.
When Head returns TRUE, the process enters the critical section. When the
process finishes the critical section or wants to abort, it deletes the appended
element from the S-HAD object. The detailed algorithms TryingProtocol, Exit-
Protocol and AbortProtocol appear in Figure 1. GetNewElement is a function
that returns a new element. This may be a system call that allocates a memory
location for an element or a function that returns an element from a free list.

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 369

TryingProtocol()

T1: R := GetNewElement()
T2: Append(R)
T3: while ¬ Head(R) do
T4: if the process wants to abort, perform AbortProtocol()

end while

ExitProtocol() / AbortProtocol()

E1: Delete(R)

Fig. 1. Abortable Mutual Exclusion Algorithm

To prove the correctness of this abortable mutual exclusion algorithm, we
show that only the process whose element is at the head of the sequence enters
the critical section. We also show that any appended element eventually becomes
the head of the sequence if it is not deleted. If process p gets an element R on
line T1, we say owner(R) = p.

Observation 1. If a process p is in the critical section, then the element R at
the head of the sequence is owned by p.

An operation is wait-free if a process performs the operation within a bounded
number of its own steps. Since any abortable mutual exclusion algorithm must
satisfy the bounded exit and bounded abort properties, Delete must be wait-
free. If GetNewElement, Append and Head are also wait-free, then the while
loop starting on line T3 is the only waiting period. In this case, the algorithm
in Figure 1 is an FCFS abortable mutual exclusion algorithm.

Theorem 1. Given wait-free implementations of an S-HAD object and Get-
NewElement, the algorithm in Figure 1 is an FCFS abortable mutual exclusion
algorithm.

Proof. The mutual exclusion property follows from Observation 1. Since Delete is
wait-free, the algorithm satisfies the bounded abort and bounded exit properties.
To prove lockout freedom, suppose that there exists an infinite execution E in
which some set of processes, P , keep performing TryingProtocol without entering
the critical section or performing AbortProtocol.

Since GetNewElement and Append are wait-free, each process p in P eventu-
ally gets a new element, Rp, on line T1 of its last invocation of TryingProtocol,
and finishes performing Append(Rp) on line T2. Since p does not perform Exit-
Protocol or AbortProtocol after its last invocation of TryingProtocol, p does not
subsequently perform Delete(Rp). Let R = {Rp|p ∈ P}. Let X be the element in
R appended earliest, and let p ∈ P be the process that performed Append(X).

By definition, any invocation that last appended an element S before X either
eventually enters the critical section and performs ExitProtocol, or eventually
performs AbortProtocol. Hence, the invocation eventually performs Delete(S).
Thus, eventually, X becomes the head of the sequence and Head(X) returns

370 H. Lee

TRUE. Since p keeps performing TryingProtocol without performing Abort-
Protocol, it performs Head(X) infinitely many times. Thus, p will eventually
enter the critical section. This contradicts the assumption that p ∈ P , so the
algorithm satisfies lockout freedom.

Since GetNewElement and Append are wait-free, each process performs lines
T1 and T2 within a bounded number of its own steps. Let the doorway be lines
T1 and T2. If process p finishes Append(R) before process q starts an invocation
of GetNewElement that returns R′, then R is appended before R′. Thus, if p does
not abort, R reaches the head of the sequence before R′. Then, by Observation
1, p enters the critical section before q. Hence, the resulting abortable mutual
exclusion algorithm satisfies the FCFS property. ��
In some systems, allocating a memory location may not be wait-free. However,
the algorithm in Figure 1 still solves abortable mutual exclusion if GetNewEle-
ment satisfies the following properties: a process that invokes GetNewElement
eventually completes GetNewElement and a process that invokes GetNewEle-
ment but wants to return to the remainder section before it completes can do
so within a bounded number of its own steps. These properties are required for
lockout freedom and bounded abort, respectively.

For this algorithm to be local-spin, Head must be implemented carefully. The
RMA complexity of one passage is the sum of the RMAs performed during one
execution of each of GetNewElement, Append and Delete, and an unbounded
number of executions of Head. Thus, in the DSM model, if Head contains even
a single RMA, then the resulting algorithm is not local-spin. However, in the
CC model, when a process reads a shared variable, it copies its value to its local
cache. Hence, even if Head contains remote memory reads, subsequent calls of
Head by process p do not generate RMAs unless another process performs a
non-trivial operation on a shared variable p reads in Head.

In the next two sections, we present wait-free, linearizable implementations
of an S-HAD object shared by N processes such that any number of calls of
Head(R) between a call of Append(R) and the subsequent call of Delete(R)
generate only a bounded number of RMAs in the CC model. Moreover, if each
element is deleted only when it is at the head of the sequence, this number of
RMAs is bounded above by a small constant. Our first implementation is simpler
but uses unbounded space, and our second implementation uses bounded space.

4 A Simple Implementation of S-HAD

In this section, we present a simple implementation of an S-HAD object. De-
tailed pseudo-code is given in Figure 2. Note that the lines are not consecutively
numbered. This is so each line has the same number as in the bounded space
implementation in Section 5.

We begin by explaining the overall structure of the implementation. An S-
HAD object is represented by an intree of records, one per element, each with
a pointer, pred, which is either NIL or points to another record, and a flag, del.
The root of the tree is a dummy record, which is never deleted, whose del field is

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 371

always ‘head’ and whose pred field is always NIL. For every other record R, the
field R.del indicates whether the element it represents is in the S-HAD sequence
or has been logically deleted. The initial value of R.del is FALSE, and it becomes
TRUE when the owner of R performs line D1 of Delete(R). The field R.pred
points to another record that was appended before R. Thus, the records form
an acyclic graph rooted at the dummy record. There is a fetch and store (or
swap) object, Tail, that initially points to the root. To perform Append(R),
a process atomically reads Tail and updates Tail to point to R on line A2 of
Append(R). Hence, Tail always points to the record that was appended most
recently.

When a process wants to know whether the element represented by its record
R is at the head of the sequence, it repeatedly updates R.pred until it points
to a record that has not been deleted. This is done by Update(R). Then, the
element represented by R is at the head of the sequence if and only if R.pred
points to the dummy record.

A process logically deletes its record R by setting R.del to TRUE. Then it
calls Update(R) one more time to ensure that R does not point to another log-
ically deleted record. This is necessary because, otherwise, a sequence with two
records that are preceded by arbitrarily many logically deleted records between
them and the dummy record can be created by repeatedly deleting the second
last record and then appending a new record.

At any point during an execution, the state of the S-HAD object is the se-
quence of records R for which line A2 of Append(R) has been performed and
R.del = FALSE. This sequence is ordered by the time at which line A2 of
Append(R) was performed. All records that represent elements in the S-HAD
sequence are on the same path to the root and the one that is closest to the root
is at the head of the sequence.

We define the linearization point of Append(R) to be when line A2 is per-
formed. Immediately afterwards, R.del = FALSE. Hence, by performing line A2
of Append(R), the element represented by R is appended to the end of the se-
quence. The element represented by R is removed from the sequence when R.del
is set to TRUE on line D1. We define this to be the linearization point of Delete.
We define the linearization point of Head(R) to be when Update(R) returns on
line H1, which is when line U2 of Update(R) is performed with (*mypred).del �=
TRUE. The correctness of the implementation in Figure 2 follows from the next
two results.

Observation 2. At the linearization point of Head(R), let S be the record pointed
to by R.pred and let d = S.del. Then Head(R) returns TRUE if and only if S is
the dummy record. If Head(R) returns FALSE, then d = FALSE.

Lemma 3. Head(R) returns TRUE if and only if the element represented by
R is at the head of the sequence at the linearization point of Head(R).

Append(R) is wait-free, since it consists of only two atomic operations. Similarly,
Head(R) and Delete(R) are wait-free if Update(R) is wait-free. The following
lemma shows that Update is wait-free.

372 H. Lee

shared variables:
type Record (pred: pointer to a record ∪ { NIL }, initially NIL

del: { TRUE, FALSE, ‘head’ }, initially FALSE)
Record Dummy = (NIL, ‘head’)
Tail: pointer to a record, initially points to Dummy

private variables:
mypred, ppred: pointer to a record

Head(R :Record) % Precondition: R.del = FALSE, R.pred �= NIL
% Postcondition: returns TRUE, if R is the head of the list; otherwise, returns FALSE

H1: Update(R)
H2: mypred := R.pred
H3: return ((*mypred).del = ‘head’)

Append(R :Record) % Precondition: R.del = FALSE, R.pred = NIL

A2: mypred := fetch and store(Tail, &R)
A3: R.pred := mypred

Delete(R :Record) % Precondition: R.del = FALSE, R.pred �= NIL

D1: R.del := TRUE
D2: Update(R)

Update(R :Record) % Precondition: R.pred �= NIL

U1: mypred := R.pred
U2: while (*mypred).del = TRUE do
U3: ppred := (*mypred).pred
U5: R.pred := ppred
U9: mypred := ppred

end while

Fig. 2. An Implementation of S-HAD

Lemma 4. If no record is appended more than once, then the while loop of
Update(R) is not performed forever.

Proof sketch. In each execution of the while loop in Update(R), R.pred is up-
dated. Each time R.pred is updated, R.pred points to a record that was appended
earlier than the record it previously pointed to. Since the number of records that
were appended earlier than R is bounded, R.pred is updated a bounded number
of times. ��
Hence, the implementation in Figure 2 is wait-free. If GetNewElement is a wait-
free system call that always returns a new record, then, by Theorem 1, the
algorithm in Figure 1 using the implementation in Figure 2 is a correct FCFS
abortable mutual exclusion algorithm.

While R.pred does not change, any sequence of calls to Head(R) generates
at most three RMAs in the CC model: the first time owner(R) reads R.pred
and (*R.pred).del, and when (*R.pred).del changes from FALSE to TRUE. If

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 373

all records are deleted in the same order as they are appended, which is the
case for our abortable mutual exclusion when no aborts occur, then R.pred
changes only once. Hence, in the abortable mutual exclusion algorithm using
this implementation of S-HAD, each process performs O(1) RMAs if no aborts
occur.

We say that a record R was deleted prematurely if R.pred did not point to
the dummy record when line D1 of Delete(R) was performed. In the abortable
mutual exclusion algorithm in Figure 1, each invocation that is aborted corre-
sponds to a prematurely deleted record. If k is the number of processes that
delete records prematurely, then we prove that the pred pointer of every record
changes O(k2) times.

Lemma 5. Let R′ be the last record that was appended prior to element R,
but was not prematurely deleted. If k′ is the number of different processes that
appended records between R′ and R inclusive, then the while loop of Update(R)
was performed at most k′(k′ + 3)/2 times between beginning Append(R) and
completing Delete(R).

Proof sketch. A record X is active if and only if the first line of Append(X) has
been performed, but the last line of Delete(X) has not yet been performed. Note
that, if the element represented by X is in the sequence, then X is also active,
but the converse may not hold after line D1 of Delete(X) has been performed.
After record X becomes inactive, X.pred does not change.

Suppose there is a sequence of records, W1, W2, . . . , Wj−1, Wj such that
Wi+1.pred points to Wi for 1 ≤ i < j. In this case, we say that there is a path from
Wj to W1. If all of W1, . . . , Wj are inactive, then Wi was active when Wi+1 be-
came inactive. Hence, Delete(Wi+1) was completed before Delete(Wi). In partic-
ular, Delete(Wj) was completed before Delete(W1). If owner(W1) = owner(Wj),
then Delete(W1) was completed before Wj was appended and hence, before
Delete(Wj) was completed. Thus, in this case, at least one of W1, . . . , Wj−1 is
active.

Since there are k′ different processes that appended an element between R′

and R inclusive during Update(R), the path from R to R′ contains � ≤ k′

active records, the first of which is R. If Yi is the ith active record between R′

and R, for i = 1, . . . , �, then the records between Yi and Yi+1 are all inactive.
It follows from the previous paragraph that each inactive record on the path
from Yi+1 to Yi has a different owner. Hence, the path from Yi+1 to Yi contains
at most k′ − i records. Also, the subpath from Y1 to R′ contains at most k′

records. Thus, the number of records on any path from R to R′ is at most
(k′− �+1)+(k′− �+2)+ . . .+(k′−1)+k′ + � = �(2k′− �+3)/2 ≤ k′(k′ +3)/2.
Since R′ was not prematurely deleted, R′.pred pointed to the dummy record
when R′.del was set to TRUE. Hence, immediately after R′ was logically deleted,
the path from R to the dummy record contained at most k′(k′+3)/2+1 records.
Therefore, R.pred was updated at most k′(k′ + 3)/2 times. ��
Excluding Update, each process performs O(1) RMAs during Append, Head,
and Delete. Lemma 5 implies that a process performs O(k2) RMAs between

374 H. Lee

beginning Append(R) and completing Delete(R). Thus, if GetNewElement takes
O(1) RMAs, the algorithm in Figure 1 using the implementation in Figure 2 has
O(k2) RMA complexity.

Theorem 2. Suppose GetNewElement takes O(1) RMAs. In the algorithm in
Figure 1 using the implementation in Figure 2, each process performs O(k2)
RMAs per passage, where k is the number of processes that began the trying
protocol immediately beforehand and subsequently aborted.

Since k is bounded by N , the worst case RMA complexity is O(N2). This worst
case can occur, but only if Θ(N) processes perform particular sequences of Ap-
pends and Deletes. A specific execution that generates the worst case is described
in the full paper.

5 An Implementation of S-HAD with Bounded Space

In the previous algorithm, even though records have been logically deleted from
the S-HAD object, processes can still access them to find out that they have
been deleted. Also, each time a process performs Append, it uses a new record.
Because logically deleted records are not deallocated, that algorithm uses un-
bounded space. However, eventually, a logically deleted record is no longer ac-
cessed, and we can safely reclaim the memory used by that record. To determine
when a logically deleted record is no longer accessed, we use a generalization of
reference counts. If the generalized reference count for a record becomes zero,
then the record can be physically deleted, since no process will subsequently
access the information in the record.

In simple reference counting, each record contains a counter and a record
can be physically deleted when its counter is zero. If record R points to record
X , record S points to Y , and a process wants to change R to point to the
same place as S, then it reads &Y from S, increments Y ’s counter, sets R
to &Y , and finally decrements X ’s counter. However, if Y ’s counter becomes
zero and Y is physically deleted between the first two steps, then the owner of
R will not notice this and may access the location in memory from which Y
was deleted. One way to prevent this is to perform the first two steps atom-
ically using double compare and swap (Detlefs et al. [4]). Unfortunately,
double compare and swap is not available in most systems.

Another approach is for the process to read S after it increments Y ’s counter
and, if S’s pointer has been changed, it decrements Y ’s counter instead of
changing R [14]. In this case, no other information in Y is accessed. However,
this method still allows access to the counter of a physically deleted record, so
the memory it occupies cannot be reclaimed by the system. Physically deleted
records can be put into a free list and reused in the future. However, when pro-
cesses access the counter of a free or recycled record, extra RMAs are generated.
Using this method in our algorithm increases the worst case RMA complexity
from Θ(N2) to Θ(N4).

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 375

shared variables:
type Record (rc: a pair of integers (orc, drc), where 0 ≤ orc < N and

−N < drc < N , initially (0, 0)
pred: a pair (predptr, prc), where predptr is NIL or a pointer to

a record and 0 ≤ prc < N is an integer, initially (NIL, 0)
del: { TRUE, FALSE, ‘head’ }, initially FALSE
done: { TRUE, FALSE}, initially FALSE)

Record Dummy = ((0,0), (NIL, 0), ‘head’, 0)
Tail: pointer to a record, initially points to Dummy

private variables:
mypred, ppred: pointer to a record
myprc, x, y: integer

Head(R :Record) % Precondition: R.del = FALSE, R.pred �= (NIL, −)
% Postcondition: returns TRUE, if R is the head of the list; otherwise, returns FALSE

H1: Update(R)
H2: (mypred,−) := R.pred

H3: return ((*mypred).del = ‘head’)

Append(R :Record) % Precondition: R.del = FALSE, R.pred = (NIL, 0)

A1: R.rc := (1, 1)
A2: mypred := fetch and store(Tail, &R)
A3: R.pred := (mypred, 0)

Delete(R :Record) % Precondition: R.del = FALSE, R.pred �= (NIL, −)

D1: R.del := TRUE
D2: Update(R)

D3: Remove(R)

Update(R :Record) % Precondition: R.pred �= (NIL, −)

U1: (mypred, −) := R.pred
U2: while (*mypred).del = TRUE do
U3: (ppred, −) := fetch and add((*mypred).pred, (0, 1))
U4: fetch and add((*ppred).rc, (1, 0))
U5: (−, myprc) := fetch and store(R.pred, (ppred, 0))
U6: (x, y) := fetch and add((*mypred).rc, (−1, myprc − 1))
U7: if (x, y) = (1, 1 − myprc) then

% Note that (*mypred).rc = (0, 0)
U8: Remove(*mypred)

end if
U9: mypred := ppred

end while

Remove(R :Record)

R1: if test and set(R.done) = TRUE then
R2: (mypred, myprc) := fetch and store(R.pred, (NIL, 0))

R3: (x, y) := fetch and add((*mypred).rc, (−1, myprc − 1))
R4: recycle(R)
R5: if (x, y) = (1, 1 − myprc) then

% Note that (*mypred).rc = (0, 0)
R6: Remove(*mypred)

end if

end if

Fig. 3. An Implementation of S-HAD with bounded space

376 H. Lee

Due to their weaknesses, instead of adopting previous methods, we devise a
new reference counting method for our algorithm. In our new memory reclama-
tion method, each record has a pointer predptr, and an original reference counter
(orc), which stores an upper bound on the number of pointers in shared memory
that point to it. In addition to orc, each record also has two more counters, a
proactive reference counter (prc) and a distributed reference counter (drc). Both
prc and drc are used to keep track of pointers that have been read and may be
written to shared memory in the future.

R.prc stores the number of times R.predptr has been read since R.predptr
was last updated. This value is transferred to S.drc when R.predptr is changed
from pointing to S to pointing to another record. In general, for any record S,
the sum of the prc’s of all records that point to S plus S.drc is bounded above
by the number of times a pointer to S has been read minus the number of times
a pointer to S has been overwritten.

R.drc is stored together with R.orc in a single variable R.rc, so that they can
be accessed together. The range of orc is from 0 to N −1 and the range of drc is
from 1 − N to N − 1. Hence, rc = (drc,orc) can be represented using O(log N)
bits in a single word of memory. fetch and add(rc, (m, n)) can be simulated
by fetch and add(rc, m · 2�log2 N� + n).

R.prc is stored together with R.predptr in a single variable R.pred. Associ-
ating a pointer with a counter was also done in [6] and [8]. In [8], a wait-free
implementation of a pointer requires a complicated atomic operation. However,
in our algorithm, processes perform only read, write, fetch and add and
fetch and store operations on pointers. Pointers in [6] are similar to ours,
but are stored together with two integers.

Since the range of prc is from 0 to N − 1, pred can be represented using
�log2 N� bits in addition to the bits used for the pointer, all stored in one word.
Since we use only O(N2) records, a pointer can be represented using O(log N)
bits. fetch and add(pred, k) adds k to prc. In our algorithm, whenever predptr
is set to point to a record X , prc becomes zero, which can be accomplished by
fetch and store(pred, (&X, 0)).

Pseudo-code for the algorithm is presented in Figure 3. Head(R) is essentially
the same as in the previous algorithm. In Append(R), the owner of R sets R.rc
to (1,1) before appending R to the end of the sequence. Most of the differences
are inside the while loop of Update(R). Unlike the previous algorithm, R.pred
can now be changed by processes other than the owner of R, on lines U3 and
R2, but only after R has been logically deleted. This does not affect the RMA
complexity of Head(R), which is only performed while R is in the sequence.

To see how Update(R) was modified, consider the situation when process p,
which owns record R, wants to update R’s predecessor pointer to point to the pre-
decessor of its predecessor, i.e. R.predptr := (*R.predptr).predptr. Suppose X is
R’s predecessor, Y is X ’s predecessor, and p’s local variable mypred points to X .
To change R to point from X to Y , process p performs line U3, in which p atom-
ically reads X.predptr and increments X.prc using fetch and add. This indi-
cates that R will reference Y and it learned about Y from X . Next, p increments

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 377

Y.orc on line U4. On line U5, p atomically changes R.predptr to Y , reads R.prc
into its local variable myprc, and resets R.prc to 0, using fetch and store.
Hence, myprc stores the number of processes that have accessed R.predptr
between the last two updates of R.predptr. Finally, on line U6, p atomically
decrements X.orc and adds myprc − 1 to X.drc, using fetch and add. The
distributed reference count is decremented, since R is no longer pointing to X .
The value that had been stored in R.prc before it was reset is transferred to
X.drc. Both of these are accomplished by adding myprc − 1 to X.drc.

When a process tries to physically delete a record R, it calls function
Remove(R). R can be physically deleted only when no record points to R, no
records will point to R, and lines D1 and D2 of Delete(R) have been completed.
R.orc = 0 indicates that no record currently points to R, and R.drc = 0 indi-
cates that no record will point to R. Hence, when R.rc = (0, 0) and Delete(R) is
completed, R can be physically deleted. To ensure that both conditions are met,
Remove(R) is called twice: one by the owner of R at the end of Delete(R) (line
D3) and the other by a process who finds that R.rc = (0, 0) during Update (line
U8) or Remove (line R6). Only the later of these two calls physically deletes
R by calling recycle(R) on line R4. recycle(R) can be either a system call that
deallocates R from memory or some function that moves R into a free list.

Remove(R) is called from exactly one of line U8 or line R6, so Remove(R) is
called exactly twice. To ensure that only the later call physically deletes R, we
use a test and set object, R.done, and only perform the rest of Remove if it
returns TRUE. Note that a record R can be physically deleted by any process,
although Delete(R) can be called only by the owner of R.

Remove is called recursively if physically deleting a record causes another
record’s reference counts to become (0, 0). When a process physically deletes a
record R, it also removes its pointer, R.predptr. If R.predptr pointed to another
record S, then S’s reference counts must be updated. This may cause S.rc to
become (0, 0) and, if it is, Remove(S) is called recursively on line R6. These
recursive calls add only O(k2) RMAs in total, if k is the number of processes
that appended a record before R and deleted it prematurely. Hence, it does not
affect the overall asymptotic RMA complexity of the algorithm.

Unlike the reference counting in [14], our algorithm allows each record to be
reclaimed by the system, provided the system calls for memory allocation and
deallocation each take O(1) RMAs. In this case, GetNewRecord in Figure 1 is
a system call for memory allocation and recycle(R) on line R4 of Figure 3 is a
system call for memory deallocation.

Alternatively, we can use a free list of length at most 3N for each process.
The reason 3N records per process suffice is discussed in the full paper. Each
process, p, maintains a Boolean array of size 3N , which indicates which records
are available. To get a new record, process p keeps checking each element of the
array until it finds a true bit. If the ith bit in the array is TRUE, p sets it to
FALSE and uses its ith record. When some process recycles the ith record of p,
it sets the ith element of p’s array to TRUE. Since p is the only process that sets

378 H. Lee

Table 1. Local-spin abortable mutual exclusion algorithms

Scott [12] Jayanti [9] Danek and New Algorithm
Lee [3]

Atomic operations fetch and store, test and set,
used besides compare and swap ll/sc - fetch and add,

read and write fetch and store

Local-spin on CC Yes Yes Yes Yes

Local-spin on DSM Yes Yes Yes No

RMAs / passage O(1) Θ(log N) Θ(log N) O(1)
if no aborts ; Θ(N)

RMAs / passage unbounded Θ(log N) Θ(log N) O(N2)
; Θ(N)

space unbounded Θ(N) Θ(N) Θ(N2)

FCFS Yes Yes No ; Yes Yes

elements of its array to FALSE, no RMA is generated when p reads FALSE.
Therefore, both GetNewRecord in Figure 1 and recycle(R) on line R4 of Figure
3 generate only O(1) RMAs.

The resulting algorithm uses only O(N2) space. It also has the same RMA
complexity, O(N2), as the previous algorithm. Therefore, the abortable mutual
exclusion algorithm in Figure 1 using this implementation of S-HAD is local-
spin, uses O(N2) space, has O(N2) RMA complexity, and each process performs
O(k2) RMAs per passage, where k is the number of processes that began the
trying protocol immediately beforehand and subsequently aborted.

6 Conclusions

We presented a local-spin abortable mutual exclusion algorithm with O(N2)
space, in which each process performs O(1) RMAs for each entry to the crit-
ical section when no processes abort, and each process performs O(k2) RMAs
when aborts occur in the CC model, where k is the number of processes that
abort. Table 1 compares our algorithm with previous abortable mutual exclusion
algorithms.

Our algorithm performs more RMAs per passage than Jayanti’s and Danek
and Lee’s in the worst case, but fewer when no aborts occur. If k = o(

√
log N)

processes began the trying protocol immediately before process p and subse-
quently aborted, then p performs o(log N) RMAs per passage in our algorithm,
which is better than Jayanti’s or Danek and Lee’s algorithms. It would be inter-
esting to compare the experimental performance of our algorithm with the other
algorithms.

It is open whether Ω(N2) space and RMAs are necessary in the CC model, if
each process performs a constant number of RMAs when no processes abort. It
is also open whether there exists a local-spin abortable mutual exclusion algo-
rithm in the DSM model with bounded space and RMAs, in which each process
performs a constant number of RMAs when no processes abort.

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 379

Acknowledgements

I would like to thank Professor Faith Ellen and the anonymous reviewers for
numerous helpful suggestions and careful corrections.

References

1. Anderson, J.H., Kim, Y.-J., Herman, T.: Shared-Memory Mutual Exclusion: Major
Research Trends Since 1986. Distributed Computing (2002)

2. Attiya, H., Hendler, D., Woelfel, P.: Tight RMR Lower Bounds for Mutual Exclu-
sion and Other Problems. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 217–226 (2008)

3. Danek, R., Lee, H.: Brief Announcement: Local-Spin Algorithms for Abortable
Mutual Exclusion and Related Problems. In: Taubenfeld, G. (ed.) DISC 2008.
LNCS, vol. 5218, pp. 512–513. Springer, Heidelberg (2008)

4. Detlefs, D.L., Martin, P.A., Moir, M., Steele Jr., G.L.: Lock-Free Reference Count-
ing. In: The 20th Annual ACM Symposium on Principles of Distributed Comput-
ing, pp. 190–199 (2001)

5. Dijkstra, E.W.: Solution of a Problem in Concurrent Programming Control. Com-
munications of the ACM 8(9), 569 (1965)

6. Goldberg, B.: Generational Reference Counting: A Reduced-communication Dis-
tributed Storage Reclamation Scheme. In: Proceedings of the ACM SIGPLAN 1989
Conference on Programming Language Design and Implementation (1989)

7. Herlihy, M., Luchangco, V., Martin, P., Moir, M.: Brief Announcement: Dynamic-
sized lock-free data structures. In: Proceedings of the 21st Annual Symposium on
Principles of Distributed Computing (2002)

8. Herlihy, M., Luchangco, V., Moir, M.: Space and Time Adaptive Non-blocking
Algorithms. Electronic Notes in Theoretical Computer Science 78, 260–280 (2003)

9. Jayanti, P.: Adaptive and Efficient Abortable Mutual Exclusion. In: Proceedings of
the 22th Annual ACM Symposium on Principles of Distributed Computing (July
2003)

10. Lamport, L.: A New Solution of Dijkstra’s Concurrent Programming Problem.
Communications of the ACM 17(8), 453–455 (1974)

11. Michael, M.M.: Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.
IEEE Transactions on Parallel and Distributed Systems 15(6) (2004)

12. Scott, M.L.: Non-blocking Timeout in Scalable Queue-based Spin Locks. In: The
21st Annual Symposium on Principles of Distributed Computing (July 2002)

13. Scott, M.L., Scherer III, W.N.: Scalable Queue-based Spin Locks with Timeout.
In: The 8th ACM Symposium on Principles and Practice of Parallel Programming
(June 2001)

14. Valois, J.D.: Lock-Free Linked Lists Using Compare-and-Swap. In: Proceedings of
the 14th Annual ACM Symposium on Principles of Distributed Computing, pp.
214–222 (1995)

	Fast Local-Spin Abortable Mutual Exclusion with Bounded Space
	Introduction
	Preliminaries
	S-HAD and Abortable Mutual Exclusion
	A Simple Implementation of S-HAD
	An Implementation of S-HAD with Bounded Space
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

