
Turning Adversaries into Friends:

Simplified, Made Constructive, and Extended

Eli Gafni1 and Petr Kuznetsov2

1 Computer Science Department, UCLA
2 Deutsche Telekom Laboratories/TU Berlin

Abstract. A liveness contract is an agreement between the specifier
of a system and a task to solve, and the programmer who makes her
living by delivering protocols. In a shared-memory system, a liveness
contract specifies infinite suffixes of executions in which the programmer
is required to solve a distributed task. If the behavior of the system does
not comply with the specification, no output is required. A convenient
way to describe a large class of liveness contracts was recently proposed
by Delporte et al. For a system Π of n processes, an adversary is a
set A of subsets of Π . The system is required to make progress only in
executions in which the set of correct processes is in A.

Given an adversary A and a task T , should the programmer sign the
contract? Can she deliver?

In this paper, we give a very simple resolution of this question for col-
orless tasks that contrasts with more involved arguments of the original
paper of Delpote et al. More importantly, our resolution is constructive
— it tells the programmer how to use A to solve T , when it is solvable.

Our framework naturally generalizes to systems enriched with more
powerful objects than read-write registers. We determine necessary and
sufficient conditions for an adversary A to solve consensus using j-process
consensus objects and read-write registers, which resolves an open ques-
tion raised recently by Taubenfeld.

1 Introduction

Distributed computing is about overcoming asynchrony and failures. Wait-free
system, a system where we make no assumptions about some synchrony or cor-
rectness of some processes, can solve only few interesting tasks. To solve more
interesting tasks, we should make more assumptions about the system behavior.

Recently [7], Delporte et al. proposed a class of assumptions that they called
adversaries. In their view, an adversary controls sets of processes that may fail
in a given execution, regardless of the time when they fail. Put differently, an
adversary is defined as a collection A of sets of processes, and they only consider
executions where some element in A is exactly the set of correct processes.
Following [7], in this paper, we explore the ability of such adversaries to enhance
solvability of distributed tasks, defined in terms of inputs the processes receive,
outputs the processes produce, and a binary relation that maps inputs to the
sets of possible outputs.

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 380–394, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Turning Adversaries into Friends 381

Why are adversaries interesting to look at? In a shared-memory system, it
is straightforward to ensure that the outputs a protocol solving a task provides
are always correct [10,22]. However, ensuring that the outputs can indeed be
eventually produced is sometimes tricky. Therefore, an adversary can be viewed
as a liveness property, that specifies under which condition the correct processes
are expected to produce outputs.

Given a task T and an adversary A, can the task be solved? It is known that
this question is in general undecidable [12,16], and Delporte et al. [7] reduced it
to the question of k-resilient solvability, i.e., assuming an adversary that consists
of all sets of n − k or more processes, restricted to colorless tasks (also called
convergence tasks [4]). The resolution proposed in [7] is not easy to follow, and
moreover, it is not constructive — it does not tell the programmer of the protocol
how to use the adversary A to solve a colorless task T , when T is solvable.

In this paper, we give a simpler constructive resolution of the question.
How to use such a condition A is shown below on a “back of an envelope”

example. The paper is just a detailed elaboration of the envelope.
Consider a system of four processes, p, q, r, and s, and consider the obstruction-

free adversaryAOF defined as the set of all singletons {{p}, {q}, {r}, {s}}.1 Thus,
AOF stipulates that an algorithm solving a task is only required to make progress
if some process is eventually forever running solo. It is immediate that AOF al-
lows for solving consensus [8]: a sequence of commit-adopt [10] instances, where
the first instance is called with the input value, every next instance is called
with the value returned by the previous instance, and the first committed value
is returned. Thus, the set consensus power [13] of AOF , i.e., the smallest k such
that k-set agreement can be solved in the presence of AOF , is 1.

In general, under which condition an adversaryA allows for solving consensus?
In this paper, we show that A provides consensus if for all S ∈ A all subsets of
S that belong to A have a non-empty intersection. Intuitively, a correct process
in the intersection acts as a leader in a classical eventual leader-based consensus
protocol [6].

What if we weaken AOF by adding one more allowed set of correct processes:
A′

OF = {p, q, r, s, pqrs}: either some process eventually runs solo, or no process
fails? What is the set consensus power of A′

OF ? It is easy to observe that A′
OF

allows for solving 2-set agreement: As {p, q, r, s} can do consensus and {pqrs}
can do consensus, run both in parallel.

But can we solve consensus with A′
OF ? The answer is “no”. Indeed, by as-

suming the converse, that there exists a read-write protocol P that, under A′
OF ,

solves consensus, we can derive a read-write consensus protocol for 2 processes
violating [9,20], as follows.

We take 2 simulators s0 and s1 that mimic a run of P in A′
OF using BG-

agreement [3,4] to make sure that every step in P is simulated consistently
across the simulators. Initially, s0 tries to start P with all 0s and s1 with all 1s
as input values of p, q, r, and s. Recall that BG-agreement is allowed to block
forever if one of the simulators fails in the middle of it. Steps of P are simulated

1 For brevity, we simply write {p, q, r, s} in the following.

382 E. Gafni and P. Kuznetsov

in a round-robin fashion on the codes of p, q, r, s until a decision value is output
in the simulated run or one code blocks because of an unresolved BG-agreement.
This unresolved agreement may block the code of either p or q but not both (we
do not need other singleton sets in A′

OF for the simulation). Say the code of p is
blocked. Thus, a live simulator, say s0, picks q and simulates just it, as long as
the unresolved BG-agreement on the code of p stays unresolved. In case it does
resolve, s0 resumes again to continue round-robin on the codes of p, q, r and s.
Thus, if no BG-agreement remains unresolved forever, the codes of all processes
p, q, r, s accept infinitely many simulated steps. Otherwise, an eventually solo
execution of p or q is simulated. Thus, the correct processes in the simulated
execution of P are {pqrs} and P should output, else, p or q continue forever
solo, and P again should output. Thus, set consensus number of A′

OF is 2.
Further, imagine that we want to boost the power of A′

OF = {pqrs, p, q, r, s}
using objects that solve consensus among two or more processes [18]. A simple
extension of the argumentation above shows that j-process consensus objects are
necessary and sufficient for solving consensus with A′

OF , where j is the maximum
of the hitting set size of S in A′

OF , over all S ∈ A′
OF .2 In our case, the hitting

set size of {pqrs} in A′
OF is 4 and, thus, we need 4-process consensus. But if we

restrict ourselves to the adversary A′′
OF = {pqrs, p, q}, then we would need only

2-process consensus.
In this paper, we generalize the observations made above for the special case

of A′
OF , to any adversary of [7]. We introduce an alternative definition of the

set consensus power of an adversary A, a positive one as we view adversaries as
helpful entities: The smallest k such that k-set agreement can be solved in the
presence of A.3 Then we provide a simple characterization of the set consensus
power of an adversary. Our characterization is self-consistent and, unlike the
definition given in [7] does not involve reductions to k-resilience.

Our simulations allow us to derive a more general result: every two adversaries
that have the same set consensus power k agree on the set of colorless tasks they
are able to solve. Informally, colorless tasks allow every process to adopt an input
or output value from any other participating process. Thus, every colorless task
is equivalent to some level of set agreement. Our technique is based on simple
direct simulations and it does not employ failure detector-based reductions of [7].

Recently, following [7], Herlihy and Rajsbaum [17], and a concurrent paper
[14], considered a restricted set of adversaries that are closed under superset: for
every S ∈ A, every its superset S′ ⊆ Π is also in A. Informally, such adversaries
say what sets of processes are expected to be live, but do not say which sets
of processes are supposed to fail. By employing elements of modern combinato-
rial topology, [17] derives the characterization of colorless tasks with respect to
superset-closed adversaries. In [14], we derive this result employing a very simple

2 The hitting set size of S in A is the size of the minimum-cardinality subset of S that
meets every element of A subset of S.

3 More precisely, [7] talks about the disagreement power of A which is the largest d
such that d-set agreement cannot be solved in the presence of A. The disagreement
power of A is the set consensus power of A minus one.

Turning Adversaries into Friends 383

simulation algorithm, a precursor to the one in this paper. Indeed, our paper [14]
generalizes naturally to unrestricted adversaries. We suspect that doing the same
with [17] is a major undertaking.

Imbs et al. [18] and Taubenfeld [21] considered special classes of progress con-
ditions in the context of shared-memory systems enriched with consensus objects
shared by subsets of j < n processes. We observe that, with respect to colorless
tasks, progress conditions of [18,21] are in fact special cases of adversaries [7].
Then we reconstruct the characterization of the power of leveled adversaries [21]
to solve consensus using j-process consensus objects and extend the result to
general adversaries, closing a question left open in [21].

This paper provides therefore a purely algorithmic characterization of adver-
saries that neither involves “esoteric” (for the distributed community) topolog-
ical arguments, as [17], nor does it rely upon weakest failure detector results,
as [7]. Neither it is stuck in the 80’s resorting at these days and age to bivalency
arguments [18,21]. Overall, this supports the contention that beyond dealing
with sub-consensus tasks [15], topology is the analogue of plowing your field
with an F16 fighter rather than a simple tractor — the F16 may do the job
faster, but it takes years to master and you are liable to crash because of the low
altitude flying and sharp turns plowing requires. Bivalency is the Ox. You can
go with it so far but no more. The golden path, between bivalency and topology,
is the BG simulation [3,4]. A tractor - simple, yet powerful and exactly suitable
for the job.

The rest of the paper is organized as follows. Section 2 briefly describes our
system model. Section 3 defines the notion of the power of a general adversary.
Section 4 presents our characterization of adversaries with respect to colorless
tasks. Section 5 extends our characterization to other computing models. Sec-
tion 6 overviews the related work and concludes the paper.

2 Model

We adopt the conventional read-write shared memory model and only describe
necessary details.

Processes and objects. We consider a distributed system composed of a set Π
of n processes {p1, . . . , pn} (n ≥ 2). Processes communicate by applying atomic
operations on a collection of shared objects. In the most of this paper, we assume
that the shared objects are registers that export only atomic read-write opera-
tions. The shared memory can be accessed using atomic snapshot operations [1].
An execution is a pair (I, σ) where I is an initial state and σ is a sequence of
process ids. A process that takes at least one step in an execution is called par-
ticipating. A process that takes infinitely many steps in an execution is said to
be correct, otherwise, the process is faulty.

Distributed tasks. A task is defined through a set I of input n-vectors (one input
value for each process, where the value is ⊥ for a non-participating process), a set
O of output n-vectors (one output value for each process, ⊥ for non-terminated

384 E. Gafni and P. Kuznetsov

processes) and a total relation Δ that associates each input vector with a set of
possible output vectors. A protocol wait-free solves a task T if in every execution,
every correct process eventually outputs, and all outputs respect the specification
of T .

Correct sets and adversaries. The correct set of an execution e, denoted correct(e)
is the set of processes that appear infinitely often in e. An adversary [7] is a collec-
tion of subsets of Π . We say that an execution e is A-compliant if correct(e) ∈ A.

Hitting sets. Given a set system (Π,A) where A is a set of subsets of Π , a
set H ⊆ Π is a minimum cardinality hitting set of (Π,A) if it is a minimum
cardinality subset of Π that meets every set in A. The hitting set size of (Π,A),
i.e., the size of a minimum cardinality hitting set of (Π,A), is denoted by h(A).
Obviously, if h(A) = 1, then ∀A′ ⊆ A, A �= ∅, h(A′) = 1. Finding the hitting
set size is NP-complete [19].

Colorless tasks. In colorless task (also called convergence tasks [4]) processes
are free to use each others’ input and output values, so the task can be defined
in terms of input and output sets instead of vectors.

Formally, let val(U) denote the set of non-⊥ values in a vector U . In a colorless
task, for all input vectors I and I ′ and all output vectors O and O′, such that
(I, O) ∈ Δ, val(I ′) ⊆ val(I), val(O′) ⊆ val(O), we have (I ′, O) ∈ Δ and (I, O′) ∈
Δ.

The Commit-Adopt protocol. The commit-adopt abstraction (CA) [10] exports
one operation propose(v) that returns (commit , v′) or (adopt , v′), for v′, v ∈ V ,
and guarantees that (a) every returend value is a proposed value, (b) if only one
value is proposed then this value must be committed, (c) if a process commits
on a value v, then every process that returns adopts v or commits v, and (d)
every correct process returns. The commit-adopt abstraction can be implemented
wait-free.

The BG-simulation technique. BG-simulation is a technique by which k + 1
processes s1, . . . , sk+1, called simulators, can wait-free simulate a k-resilient exe-
cution of any asynchronous n-process protocol A [3,4]. The simulation guarantees
that each simulated step of every process pj is either agreed on by all simulators,
or one less simulator participates further in the simulation for each step which
is not agreed on.

The central building block of the simulation is the BG-agreement protocol.
The protocol is safe—every decided value was previously proposed, and no two
different values are decided— but not necessarily live. If a simulator slows down
in the middle of BG-agreement, the protocol’s execution at other correct simula-
tors may “block” until the slow simulator finishes the protocol. If the simulator
is faulty, no simulator is guaranteed to decide.

Suppose the simulation tries to promote m > k codes in a fair (e.g., round-
robin) way. As long there is a live simulator, at least m− k simulated processes
accept infinitely many steps of A in the simulated execution.

Turning Adversaries into Friends 385

3 Set Consensus Power of A
Let A be an adversary and take any set S ⊆ P . AS denotes the adversary
that consists of S and all elements of A that are subsets of S. E.g., for A =
{pq, qr, q, r} and S = qr, AS = {qr, q, r}.

Let S ∈ A and take a ∈ S. Then AS,a denotes the adversary that consists of
all elements of AS that do not include a. E.g., for A = {pq, qr, q, r}, S = qr,
and a = q, AS,a = {r}. Note that if the hitting set size of (Π,AS) is 1, then for
every a ∈ S that meets every set in AS , we have AS,a = ∅. Thus:

Lemma 1. h(AS) > 1 if and only if ∀a ∈ S : AS,a �= ∅.
Definition 1. The quantity denoted setcon(A), which will later be shown to be
the set consensus power of A, is defined as follows:

– If A = ∅, then setcon(A) = 0
– Otherwise, setcon(A) = maxS∈A mina∈S setcon(AS,a) + 1

Thus, setcon(A), for a non-empty adversary A, is determined as setcon(AS̄,ā)+
1 where S̄ is an element of A and ā is a process in S̄ that “max-minimize”
setcon(AS,a). Note that for A �= ∅, setcon(A) ≥ 1.

We say that S ∈ A is proper if it is not a subset of any other element in A.
Let proper (A) denote the set of proper elements in A. Note that since for all
S′ ⊂ S, mina∈S′ setcon(AS′,a) ≤ mina∈S setcon(AS,a), we can replace S ∈ A
with S ∈ proper (A) in Definition 1.

For example, for A = {pqr, pq, pr, p, q, r}, we have setcon(A) = 2: for S = pqr
and a = p, we have AS,a = {q, r} and setcon(AS,a) = 1. Intuitively, in an
execution where the correct set belongs to A−AS,a = {pqr, pq, pr, p}, process p
can act as a leader for solving consensus. If the execution’s correct set belongs
to AS,a = {q, r} (either q or r eventually runs solo) then q and r can solve
consensus using an obstruction-free algorithm. Running the two algorithms in
parallel, we obtain a solution to 2-set agreement. The reader can easily verify
that any other choice of a ∈ pqr results in larger values of setcon(AS,a).

As another example, consider the t-resilient adversary At-res = {S ⊆ Π, |S| ≥
n − t}. It is easy to verify recursively that setcon(At-res) = t + 1: at each level
1 ≤ j ≤ t + 1 of recursion we consider a set S of n − j + 1 elements, pick up a
process p ∈ S and delegate the set of n−j processes that do not include p to level
j+1. At level t+1 we get a set of size n−t and stop. Thus, setcon(At-res) = t+1.

More generally, consider superset-closed adversaries A [14]: for every S ∈ A,
every its set S′ such that S ⊆ S′ ⊆ Π is also in A.

Theorem 1. For all superset-closed adversaries A, setcon(A) = h(A).

Proof. By definition, for A = ∅, setcon(A) = h(A) = 0. By induction, suppose
that for all 0 ≤ j < k and all superset-closed adversaries A′ with h(A′) = j, we
have setcon(A′) = j.

Consider a superset-closed adversary A such that h(A) = k. The only proper
element of A is the whole set of processes Π . Thus, setcon(A) = mina∈Π

386 E. Gafni and P. Kuznetsov

Initially:
∀j, Aj = ∅

PartitionAdv(A)
1 partition(A, 1)

partition(B, j)
2 while B �= ∅ do
3 (B, b) := args maxS∈proper(B) mina∈S setcon(BS,a)
4 Aj := Aj ∪ (BB − BB,b)
5 partition(BB,b, j + 1)
6 B := B − BB

Fig. 1. Partitioning an adversary with setcon = k

setcon(AΠ,a) + 1. Since h(A) = k, by removing all elements that include a
we obtain an adversary AΠ,a such that h(AΠ,a) ≥ k − 1. (Otherwise, there is a
hitting set of A of size less than k.) By picking up a in a hitting set of A of size
k we obtain, by the induction hypothesis, h(AΠ,a) = setcon(AΠ,a) = k − 1 and,
thus, setcon(A) = k.

For general adversaries, for convenience, we first consider the special case of set
consensus power 1. Definition 1 and Lemma 1 imply:

Lemma 2. setcon(A) = 1 if and only if ∀S ∈ A, h(AS) = 1

We show below that the elements of every adversary A with setcon(A) = k can
be split into k sub-adversaries such that setcon of every sub-adversary is 1.

Theorem 2. Let A be an adversary, and let setcon(A) = k. Then there exists
A1, . . . ,Ak, a partitioning of A, such that, for all 1 ≤ j ≤ k, setcon(Aj) = 1.

Proof. Let A be an adversary such that setcon(k). Our goal is to partition A
into k sub-adversaries A1, . . . ,Ak such that ∀j = 1, . . . , k, ∀S ∈ Aj , h(Aj

S) = 1.
We construct the desired partitioning of A using procedure PartitionAdv (A)
described in Figure 1.

Suppose that at a level j ∈ {1 . . . , k}, we have B ⊆ A, a set of elements of
A which were not yet assigned a level. We recursively assign elements of B to
levels j or more using procedure partition(B, j).

Let B and b ∈ B max-minimize setcon(BS,a) over all S ∈ B and a ∈ S (ties
broken deterministically). Then we assign BB − BB,b to level j and recursively
partition BB,b on level j + 1 by calling partition(B, j + 1). When we are done,
i.e., all elements of BB are assigned to levels j or more, we proceed to assigning
the remaining elements of B − BB to level j or more, and we repeat this until
we exhaust B.

We observe first that this procedure recursively explores all elements in A,
i.e., every element S ∈ A is assigned to some level j ≥ 1. By construction, each

Turning Adversaries into Friends 387

Aj only contains sets S with the hitting set size 1, namely, all S′ ∈ AB that
contain b (chosen in line 3). All other elements of AS are delegated to levels j+1
or more.

By Definition 1 and Lemma 1, if we start from the whole set A at level 1
(line 1), and setcon(A) = k, exactly levels 1, . . . , k are populated.

Finally, by construction, for all j and all S ∈ proper (Aj), h(Aj
S) = 1. By

Lemma 2, for all j, setcon(Aj) = 1.

Before we characterize the ability of adversaries to solve generic colorless tasks,
we consider the special case of adversaries of setcon = 1.

Theorem 3. If setcon(A) = 1, then A solves consensus.

Proof. Recall that if setcon(A) = 1, then, by Lemma 2, ∀S ∈ A, h(AS) = 1. The
consensus algorithm is presented in Figure 2. This is a rotating coordinator-based
algorithm inspired by the consensus algorithm by Chandra and Toueg [6].

The algorithm proceeds in rounds. In each round r, every process pi first
tries to commit its proposal in a new instance of commit-adopt. If pi succeeds,
then the committed value is written in the “decision” register D and returned.
Otherwise, pi adopts the returned value as its current estimate and writes it
in Ri equipped with the current round number r. Then pi takes snapshots of
{R1, . . . , Rn} until either a set S ∈ A reaches round r or a decision value is
written in D (in which case the process returns the value from D). If no decision
is taken yet, then pi checks if the coordinator of this round, pr mod n, is in S. If
so, pi adopts the value written in Rr mod n and proceeds to the next round.

Safety of the algorithm follows from the properties of commit-adopt. Indeed,
the first round in which some process commits on some value v in line 14 locks
the value for all subsequent rounds.

For liveness, suppose, by contradiction, that the algorithm never terminates in
some A-compliant execution e. Recall that we only consider executions in which
some set in A is exactly the set of correct processes. Therefore, every correct
process goes through infinitely many rounds.

Let S̄ ∈ A be the set of correct processes in e. After a round r′ when all
processes outside S̄ have failed, every element of A evaluated by a correct process
in line 16 is a subset of S̄. Finally, since the hitting set size of AS̄ is 1, all these
elements of A overlap on some correct process pj .

Consider round r = mn + j ≥ r′. In this round, pj not only belongs to all
sets evaluated by the correct processes, but it is also the coordinator (j = r
mod n). Thus, the only value that a process can propose to commit-adopt in
round r +1 is the value previously written by pj in Rj . Thus, every process that
returns from commit-adopt in round r + 1 commits—a contradiction. Hence, no
read-write protocol can solve T ′ in the presence of A.

Theorems 2 and 3 imply the following:

Corollary 1. Let A be an adversary such that setcon(A) = k. Then the adver-
sary can solve k-set agreement.

388 E. Gafni and P. Kuznetsov

Shared variables:
D, initially ⊥
R1, . . . , Rn, initially ⊥

propose(v)
7 est := v
8 r := 0
9 S := P
10 repeat
11 r := r + 1
12 (flag, est) := CAr.propose(v)
13 if flag = commit then
14 D := est ; return(est) {Return the committed value}
15 Ri := (est , r)
16 wait until ∃S ∈ A, ∀pj ∈ S: Rj = (vj , rj) where rj ≥ r or D �= ⊥

{Wait until a set in A moves}
17 if pr mod n+1 ∈ S then
18 est := vr mod n+1 {Adopt the estimate of the current leader}
19 until D �= ⊥
20 return(D)

Fig. 2. Consensus with a “one-level” adversary A, setcon(A) = 1

Proof. First we apply Theorem 2 to partition A into k classes A1, . . . ,Ak such
that, for all j = 1, . . . , k, setcon(Aj) = 1. Then every process runs k parallel
consensus algorithms established by Theorem 3, one for each Aj , proposing its
input value in each of these consensus instances (the idea originally appeared
in [2]). Since the set of correct processes in every A-compliant execution belongs
to some Aj , at least one consensus instance returns. The process decides on the
first such returned value. Moreover, at most k different values are decided and
each returned value was previously proposed.

The next section shows that no read-write protocol can solve (k−1)-set agree-
ment under an adversary A such that setcon(A) = k.

4 Characterizing Colorless Tasks

In this section, we show a more general result: the set of colorless tasks that can
be solved with an adversary A with setcon(A) = k is exactly the set of colorless
tasks that can be solved (k − 1)-resiliently, but not k-resiliently. The proof is
based on two simple applications of BG simulation [3,4].

First, we show that A solves every (k − 1)-resiliently solvable colorless task
T by presenting an algorithm that, in every A-compliant execution, simulates a
(k − 1)-resilient execution of a protocol solving T .

Second, we show that A cannot solve a colorless task T ′ that is not (k − 1)-
resiliently solvable by presenting an algorithm that (k − 1)-resiliently simulates
any protocol that solves T ′ in every A-compliant execution.

Turning Adversaries into Friends 389

Local variables:
B1, . . . , Bk, initially ⊥ {Set of currently simulated elements of A}
b1, . . . , bk, initially ⊥ {Set of currently blocked processes}
L, initially 1 {The current level of simulation}

Code for every simulator si, i = 1, . . . , n
21 B1 := the first element S ∈ proper (A) such that setcon(AS) = k

{In some deterministic order}
22 L := 1
23 repeat forever
24 � := 1
25 while � < L and the current step of b� is still blocked do � = � + 1
26 if � < L then L := � {Return to level � if the step of b� is resolved}
27 let pj ∈ BL be the process with the least number of simulated steps
28 run BG-agreement for the next step of pj

29 if the step of pj is blocked and L < k then
30 bL := pj

31 BL+1 := the first set in proper(ABL,bL) with power ≥ k − L
{Such a set exists, since setcon(ABL) ≥ k − L + 1}

32 L := L + 1

Fig. 3. Simulating an A-compliant execution

Theorem 4. Let A be an adversary such that setcon(A) = k and T be a color-
less task. A solves T if and only if T is (k − 1)-resiliently solvable.

Proof. Let A be an adversary such that setcon(A) = k.
Let T be a colorless (k − 1)-resiliently solvable task. By Corollary 1, A can

implement k-set agreement. Then we apply the generic algorithm of [11] that
solves every (k − 1)-resilient colorless task using a solution to k-set agreement
as a black box. Thus, A solves T .

For the other direction, suppose that A solves a colorless task T ′ that is not
solvable (k − 1)-resiliently, and let Alg be the corresponding algorithm.

We describe below a simulation protocol (summarized in Figure 3) that allows
n simulators, s1, . . . , sn, to (k−1)-resiliently simulate an A-compliant execution
of Alg.

Essentially, the protocol builds upon BG-simulation, except that the order
in which steps of Alg is not fixed in advance. Instead, the order is determined
online, based on the currently observed set of participating processes.

Let B1 be an element of proper (A) such that setcon(AB1) = k (by the
definition of setcon such a set exists). Initially, every simulator proceeds by
simulating steps of processes in B1 in a round-robin fashion. If simulating a
step blocks—some other simulator stopped in the middle of the BG agreement
protocol of some process b1 ∈ B1—the simulator proceeds to simulating steps
of the processes in B2, the “next” not yet blocked element of AB1 such that
setcon(AB2) ≥ k − 1. Indeed, by Definition 1, for all b ∈ B, setcon(AB1,b) ≥

390 E. Gafni and P. Kuznetsov

setcon(AB1) − 1 = k − 1. Thus, such a set B2 ∈ AB1,b1 exists. The procedure is
then repeated for B2: steps of processes in B2 are simulated as long as no pro-
cess in B2 is blocked. As soon as a blocked process b2 is observed, the simulator
proceeds to simulating B3, an element of AB2,b2 that has consensus power at
least k − 2, etc. Inductively, since setcon(A) = k, if the simulation reaches level
k, then Bk �= ∅.

Every simulator periodically checks if some of the previously blocked agree-
ments are resolved (line 25). If so, the simulator jumps back to the smallest level
with a resolved agreement (line 26).

Note that, since every step of Alg is agreed upon using the BG-agreement
protocol, the simulation constructs a correct execution of Alg [3,4]. Now we
show that the produced execution is indeed A-compliant, and thus Alg must
terminate.

First, we observe that no line in the pseudo-code presented in Figure 3 is
blocking. Thus, every correct simulator proceeds through infinitely many rounds
in lines 24-29. Consider level � and suppose that some correct process never
observed the currently simulated step of b� being resolved (it is blocked forever by
a faulty simulator). Since simulators explore the simulated sets in a deterministic
order starting from level 1, every correct process eventually blocks on the same
step of b�.

Now let � be the lowest level in which no step in B� is observed blocked forever.
Since there are at most k − 1 faulty simulators, and a faulty simulator cannot
block more than one simulated process, � ≤ k. Thus, every correct process sim-
ulates infinitely many steps of B�, and, eventually, every simulated step belongs
to a process in B�. By construction, B� ∈ A and, thus, the simulated run of Alg
is A-compliant. Therefore, Alg must terminate in the simulated execution and
we obtain a (k − 1)-resilient solution to T ′ — a contradiction.

The set consensus power of an adversary A is the smallest k such that A can
solve k-set agreement. Theorem 4 implies:

Corollary 2. The set consensus power of A is setcon(A).

By Theorem 1, determining setcon(A) may boil down to determining the hitting
set size of (Π,A), and thus, by [19]:

Corollary 3. Determining the set consensus power of an adversary is NP-
complete.

The disagreement power of an adversary A [7], denoted d(A), is the largest d
such that d-set agreement cannot be solved in the presence of A. By Corollary 2,
d(A) = setcon(A) − 1.

5 Extension to Other Models

In a recent paper [18], Imbs et al. considered asymmetric progress conditions
that allow for modeling different progress guarantees for different processes. An

Turning Adversaries into Friends 391

asymmetric progress condition associates each process pi with a set Pi of process
subsets that contain pi. Process pi is expected to make progress (e.g., output a
value in a task solution) only if the current set of correct processes is in Pi.

It is easy to see that with respect to the solvability of colorless tasks, the
asymmetric progress conditions of [18] can be modeled as adversaries of [7].
Indeed, for each progress condition P = {P1, . . . ,Pn}, we can construct an
adversary AP = ∪iPi. Since to solve a colorless task, it is sufficient to make sure
that at least one process decides, every P-resilient solution to a colorless task
implies an AP -resilient solution, and vice versa.

Observation 5. A colorless task T is solvable with a progress condition P if
and only if it is solvable with the adversary AP .

In an even more recent paper [21], Taubenfeld focused on a special case of leveled
adversaries that only specify the sizes of correct sets. Such an adversary L can
be specified as a sequence of number in {1, . . . , n}: for each j ∈ L, the adversary
contains all process sets of size j. The paper shows, among other things, that
consensus can be solved with L using j-process consensus objects (i.e., objects
that can solve consensus among up to j processes) if and only if j ≥ width(L),
where width(L) = max(L) − min(L) + 1.

Note that width(L) is exactly h(LS) for any S ∈ proper (L). Indeed, we need
exactly width(L) processes to meet every set of min(L) processes that is subset
of an element of proper (L) (a set of max(L) processes).

Theorem 6. A leveled adversary L such that width(L) = k can wait-free solve
consensus using j-process consensus objects if and only if j ≥ k.

Proof. (Sketch) L can solve consensus using k-process consensus and read-write
registers as follows. As in the consensus algorithm in Figure 2, every process
alternates between instances of commit-adopt and a leader-based reconciliation
protocol. The first committed value is written in a decision register and returned.
Instead of a single coordinator in a hitting set of size 1, we now select a “coor-
dinator group” of size k. Thus, there are n choose k coordinator groups, and we
place them in a deterministic order: C0, . . . , C(n

k)−1. Now process pi considers
itself a coordinator of a round r if pi ∈ Cr mod (n

k). Furthermore, every round r

is associated with a k-process consensus object consr that can only be accessed
by processes in Cr mod (n

k).
In Figure 4, we give an update of lines 15-18 of the consensus algorithm

in Figure 2, the rest of the algorithm remains unchanged. As in the proof of
Theorem 3, eventually, there will be a round r′ when only a subset of processes
of some S ∈ L of size max(L) take steps and Cr′ mod (n

k) is a hitting set of
LS (the adversary that consists of S and all its subsets in L). Thus, in round
r′, every correct process pi will adopt the estimate value agreed upon by the
processes in Cr′ mod (n

k): every element of L evaluated by pi in line 35 should
include at least one process in Cr′ mod (n

k). Thus, every correct process accesses
the instance of commit-adopt in round r′ + 1 with the same value and decides.

392 E. Gafni and P. Kuznetsov

33 if pi ∈ Cr mod (n
k)

then est := consr.propose(est)

34 Ri := (est , r)
35 wait until ∃S ∈ L, ∀pj ∈ S: Rj = (vj , rj) where rj ≥ r or D �= ⊥

{Wait until a set in L moves}
36 if ∃pj ∈ C

r mod (n
k)

∩ S then

37 est := vj {Adopt the estimate of the current coordinator group}

Fig. 4. Solving consensus with L and k-process consensus objects: replacing lines 15–18
in Figure 2

Now, by contradiction, suppose that we can solve consensus with L using
(k−1)-process consensus objects, and let Alg be the corresponding algorithm. We
establish a contradiction by presenting a wait-free 2-process consensus algorithm.

It is straightforward to extend our simulation in Figure 3 to simulate a pro-
tocol that, in addition to read-write registers, uses (k − 1)-process consensus
objects. Indeed, let two simulators simulate steps of Alg of a set B1 ∈ L of
max(L) processes in a round-robin fashion. A simulator that fails while simu-
lating a step that accesses a (k − 1)-process consensus object can block a set S
of up to k − 1 simulated codes that are in process of accessing this object. But
since h(LB1) = k, we still have at least one set B2 of min(L) processes that are
not blocked. By applying the logic used in the proof of Theorem 4, we obtain an
L-compliant execution of Alg. The simulated execution of Alg must terminate
— a contradiction.

Theorem 6 is mildly surprising in the sense that the ability of j-consensus
objects to boost the power of L to solve consensus has nothing to do with the
exact structure of L, but depends only on the size of the hitting set of LS for
some S ∈ L of the maximal size. Indeed, notice that our argumentation has
nothing to do with “sequences” or “width,” it only uses the hitting set size of
LS for S ∈ proper (L). A straightforward extension of Theorem 6 resolves an
open question raised in [21].

Theorem 7. An adversary A can wait-free solve consensus using j-process con-
sensus objects if and only if j ≥ maxS∈A(h(AS)).

6 Concluding Remarks

An adversary, as defined by Delporte et al. [7], is in fact a special case of an
environment of [5] that determines which sets of processes are allowed to fail
without specifying the timing of failures. Thus, we can rephrase the statement
“task T can be solved with adversaryA”, as “task T can be solved in environment
A using the dummy failure detector”. (The output of the dummy failure detector
does not depend on the failure pattern.) It is shown in [13] that, with respect
to colorless tasks, failure detectors can be split into n equivalence classes, and
each class j agrees on the set of tasks it can solve: namely, tasks that can be

Turning Adversaries into Friends 393

solved (j − 1)-resiliently and not j-resiliently. Therefore, by applying [13], we
conclude that each adversary belongs to one of such equivalence class. This
characterization is however a brute-force solution and it does not give us an
explicit algorithm to compute the class to which a given adversary belongs.

The approach taken in [7] is based on a three-stage simulation. First, it is
shown how an adversary can simulate any dominating adversary, where the
domination is defined through involved recursive inclusion properties. Second, it
is shown that every adversary that does not dominate the k-resilient adversary
is strong enough to implement the anti-Ωk failure detector that, in turn, can be
used to solve k-set agreement [23]. Finally, it is shown that anti-Ωk can be used
to solve any colorless task that can be solved k-resiliently.

Instead, this paper proposes a self-consistent, constructive and simple char-
acterization of general adversaries of [7], and sketches an extension of the char-
acterization to models that use j-process consensus objects [18,21].

Acknowledgment. The first author is grateful to Gadi Taubenfeld for a few
nights of pillow talk about [18,21].

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. Journal of the ACM 40(4), 873–890 (1993)

2. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: Simultaneous consensus
tasks: A tighter characterization of set-consensus. In: Chaudhuri, S., Das, S.R.,
Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 331–341.
Springer, Heidelberg (2006)

3. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC, pp. 91–100. ACM Press, New York (May 1993)

4. Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14(3), 127–146 (2001)

5. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4), 685–722 (1996)

6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

7. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagree-
ment power of an adversary. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp.
8–21. Springer, Heidelberg (2009)

8. Fich, F.E., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free algorithms can
be practically wait-free. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp.
493–494. Springer, Heidelberg (2005)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

10. Gafni, E.: Round-by-round fault detectors (extended abstract): Unifying synchrony
and asynchrony. In: Proceedings of the 17th Symposium on Principles of Dis-
tributed Computing (1998)

11. Gafni, E., Guerraoui, R.: Generalizing state machine replication. Technical report,
EPFL (2010), http://infoscience.epfl.ch/record/150307

http://infoscience.epfl.ch/record/150307

394 E. Gafni and P. Kuznetsov

12. Gafni, E., Koutsoupias, E.: Three-processor tasks are undecidable. SIAM J. Com-
put. 28(3), 970–983 (1999)

13. Gafni, E., Kuznetsov, P.: On set consensus numbers. In: Keidar, I. (ed.) DISC 2009.
LNCS, vol. 5805, pp. 35–47. Springer, Heidelberg (2009)

14. Gafni, E., Kuznetsov, P.: L-resilient adversaries and hitting sets. CoRR,
abs/1004.4701 (2010) (to appear in ICDCN 2011), http://arxiv.org/abs/1004.
4701

15. Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus tasks: Renaming is weaker
than set agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338.
Springer, Heidelberg (2006)

16. Herlihy, M., Rajsbaum, S.: The decidability of distributed decision tasks (extended
abstract). In: STOC, pp. 589–598 (1997)

17. Herlihy, M., Rajsbaum, S.: The topology of shared-memory adversaries. In: PODC
(2010)

18. Imbs, D., Raynal, M., Taubenfeld, G.: On asymmetric progress conditions. In:
PODC (2010)

19. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations, 85–103 (1972)

20. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unreli-
able asynchronous processes. Advances in Computing Research 4, 163–183 (1987)

21. Taubenfeld, G.: The computational structure of progress conditions. In: Lynch,
N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 221–235. Springer,
Heidelberg (2010)

22. Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus algorithms for
failure detectors. In: Proceedings of the 17th ACM Symposium on Principles of
Distributed Computing, pp. 297–306 (1998)

23. Zieliński, P.: Anti-omega: the weakest failure detector for set agreement. In: PODC
(August 2008)

http://arxiv.org/abs/1004.4701
http://arxiv.org/abs/1004.4701

	Turning Adversaries into Friends: Simplified, Made Constructive, and Extended
	Introduction
	Model
	Set Consensus Power of A
	Characterizing Colorless Tasks
	Extension to Other Models
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

